

Datasheet

Kyocera TCG070WVLRxPCx-GDx117

KY-01-019

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Spec No.TQ3C-8EAF0-E1YAA163-00DateOctober 17, 2014

TYPE : TCG070WVLR*PC*-GD*117

< 7.0 inch WVGA transmissive color TFT with LED backlight and constant current circuit for LED backlight and touch panel>

CONTENTS

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Specification of function
- 7. Optical characteristics
- 8. Interface signals
- 9. Input timing characteristics
- 10. Lot number identification
- 11. Warranty
- 12. Precautions for use
- 13. Reliability test data
- 14. Outline drawing

KYOCERA DISPLAY CORPORATION

This specification is subject to change without notice. Consult Kyocera before ordering.

Original	Designed by:	Engineering de	Confirmed by: QA dept.		
Issue Date	Prepared	Checked	Approved	Checked	Approved
October 17, 2014	S Oktaka	Y. Yamazaki	W. Yano	D. Sato	I. Kamars

SPEC

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	-

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

K 40CERa

			Spe	ec No.		Part	No.		Pa
				3C-8EAF0-E1YA	A163-00	Т	CG070WVLR*PC	*-GD*117	1
			$\overline{\mathbf{R}}\mathbf{e}$	vision r	\underline{ecor}	$\cdot \mathbf{d}$			I
Date		Designed	d by :	Engineering of	lept.		Confirmed by : QA dept.		
D	ale	Prepar	red	Checked	Approv	ved	Checked	Approve	d
Rev.No.	Date	Page			Des	cripti	ions		
100 111 01	Dute	Tugo			200	011001			

Page -

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	1

1. Application

This document defines the specification of TCG070WVLR*PC*-GD*117. (RoHS Compliant)

2. Construction and outline

LCD	: Transmissive color dot matrix type TFT
Backlight system	: LED
Polarizer	: Glare treatment
LCD Interface	: LVDS
Additional circuit	: Timing controller, Power supply (3.3V input) With Constant current circuit for LED Backlight
Touch panel	: Projected capacitive touch panel
Touch panel Interface Surface film	I2C (Equipped Touch panel IC)Anti-Glare Anti-finger print treatment

3. Mechanical specifications

Item	Specification	Unit
Outline dimensions 1)	169.8(W)×109.7(H)×(9.2)(D)	mm
Active area (LCD)	152.4(W)×91.44(H) (17.8cm/7.0 inch(Diagonal))	mm
Active area (Touch panel)	152.4(W)×91.44(H)	mm
Dot format	800×(R,G,B)(W)×480(H)	dot
Dot pitch	0.0635(W)×0.1905(H)	mm
Base color 2)	Normally Black	-
Surface hardness 3)	3H	-
Mass	(260)	g

1) Projection not included. Please refer to outline for details.

2) Due to the characteristics of the LCD material, the color varies with environmental temperature.

3) Conforms to JIS K54000 8-4

4. Absolute maximum ratings

	Item	Symbol	Min.	Max.	Unit
Supply volta	ge(+3.3V)	$V_{\rm DD}$	-0.3	4.0	V
Supply volta	ge(+12V)	$V_{\rm IN}$	-0.3	14.0	V
	RxINi+, RxINi- 1)	V_{I1}	-0.3	2.8	V
Input signal	CK IN+, CK IN-	V_{I2}	-0.3	2.8	V
voltage 2)	SELLVDS, BITSEL, SC	V_{I3}	-0.3	V_{DD} +0.5	V
	BLBRT, BLEN	V_{I4}	-0.3	$V_{\rm IN}$	V
Supply voltage for touch panel		VTP	-0.3	3.6	V
Input signal	voltage for touch panel	VTPS	-0.3	V _{TP} +0.3	V

4-1. Electrical absolute maximum ratings

1) i=0,1,2,3

2) V_{DD} must be supplied correctly within the range described in 5-1.

4-2. Environmental absolute maximum ratings

Item		Symbol	Min.	Max.	Unit
Operating temperature	1)	Top	-20	70	°C
Storage temperature	2)	Tsto	-30	80	°C
Operating humidity	3)	Hop	10	4)	%RH
Storage humidity	3)	$\mathrm{H}_{\mathrm{STO}}$	10	4)	%RH
Vibration		-	5)	5)	-
Shock		-	6)	6)	-

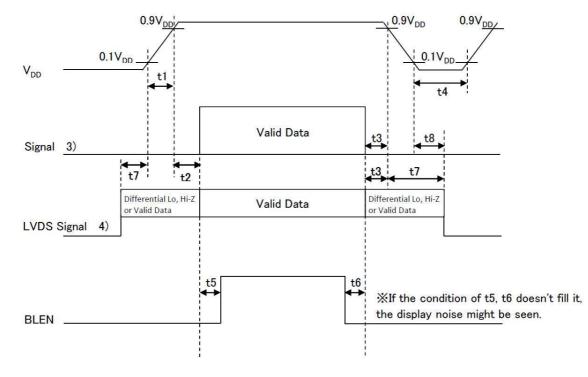
- 1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.
- 2) Temp. = -30°C < 48h , Temp. = 80°C < 168h
 Store LCD at normal temperature/humidity. Keep them free from vibration and shock. An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard. (Please refer to "Precautions for Use" for details.)
- 4) Non-condensing
- 5) Temp.≦40°C, 85%RH Max.

Temp.>40°C, Absolute humidity shall be less than 85%RH at 40°C.

5)

Frequency	$10{\sim}55~{\rm Hz}$	Acceleration value
Vibration width	0.15mm	$(0.3 \sim 9 \text{ m/s}^2)$
Interval	10-55-10	Hz 1 minutes

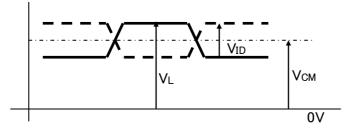
2 hours in each direction X, Y, Z (6 hours total) EIAJ ED-2531


 6) Acceleration: 490 m/s², Pulse width: 11 ms 3 times in each direction: ±X, ±Y, ±Z EIAJ ED-2531

5. Electrical characteristics

5-1. LCD

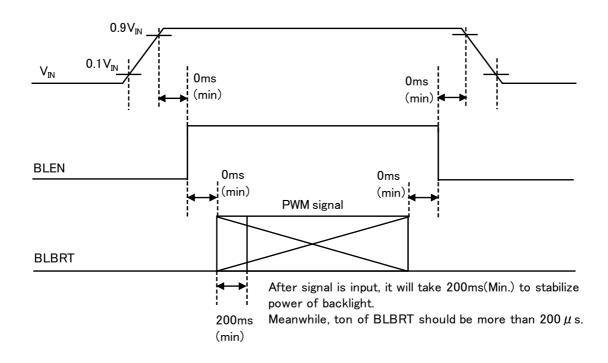
						Temp. =	-20~70°C
Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	1)	V_{DD}	-	3.0	3.3	3.6	V
Current consumption		\mathbf{I}_{DD}	2)	-	200	260	mA
Permissive input ripple volt	tage	V_{RP}	V _{DD} =3.3V	-	-	100	mVp-p
I a sect a 'maral analta na	2)	V_{IL}	"Low" level	0	-	0.8	V
Input signal voltage	3)	V_{IH}	"High" level	2.0	-	V_{DD}	V
To see the large set		Iol	V _{I3} =0V	-10	-	10	μ A
Input leak current		I _{OH}	V _{I3} =3.3V	-	-	400	μ A
LVDS Input voltage	4)	$V_{\rm L}$	-	0	-	1.9	V
Differential input voltage	4)	VID	-	250	350	450	mV
Differential input	4) 5)	V_{TL}	"Low" level	V _{CM} -100	-	-	mV
threshold voltage		V_{TH}	"High" level	-	-	V _{CM} +100	mV
Terminator		\mathbf{R}_1	-	-	100	-	Ω
		t1	-	0.1	-	10	ms
		t2	-	0	-	-	ms
		t3	-	0	-	-	ms
X ⁷	1) ()	t4	-	1.0	-	-	s
V _{DD} -turn-on conditions	1) 6)	t5	-	200	-	-	ms
		t6	-	200	-	-	ms
		t7	-	0	-	10	s
		t8	-	0	-	-	ms


1) V_{DD} -turn-on conditions

2) Display pattern:

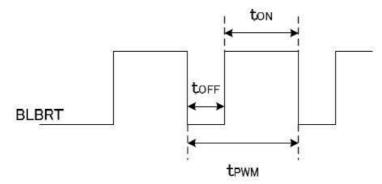
$V_{DD} = 3.3V, Te$	$emp. = 25^{\circ}C$
	123 456 • • • • • • • • • • • • • • • • • • •
1	
2	
3	
:	
:	
:	
479	
480	
(dot)	

- 3) Input signal : SELLVDS, BITSEL, SC
- 4) Input signal : RxIN3+, RxIN3-, RxIN2+, RxIN2-, RxIN1+, RxIN1-, RxIN0+, RxIN0-CK IN+, CK IN-


- 5) V_{CM} : LVDS Common mode voltage (V_{CM} =1.25V)
- 6) Please power on LVDS transmitter at the same time as VDD, or LVDS transmitter should be powered on first.

5-2. Constant current circuit for LED Backlight

	0			Ter	mp. = -20~	~70°C
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage 1)	VIN	-	10.8	12.0	13.2	V
Current consumption	I_{IN}	2)	-	235	400	mA
Permissive input ripple voltage	$V_{\rm RP_BL}$	$V_{IN}=12.0V$	-	-	100	mVp-p
DI DDT Issuest sime al suelta na	VIL_BLBRT	"Low" level	0	-	0.8	V
BLBRT Input signal voltage	VIH_BLBRT	"High" level	2.3	-	V_{IN}	V
BLBRT Input pull-down resistance	R_{IN_BLBRT}	-	100	300	500	kΩ
DI FN Issuet sime al scalta na	VIL_BLEN	"Low" level	0	-	0.8	V
BLEN Input signal voltage	$V_{\rm IH_BLEN}$	"High" level	2.3	-	$V_{\rm IN}$	V
BLEN Input pull-down resistance	$R_{\rm IN_BLEN}$	-	100	300	500	kΩ
PWM Frequency 3)	$\mathbf{f}_{\mathrm{PWM}}$	-	200	-	10k	Hz
		f_{PWM} =200Hz	1	-	100	%
P WM Duty ratio 3)	$\mathbf{D}_{\mathrm{PWM}}$	f _{PWM} =2kHz	10	-	100	%
		f _{PWM} =10kHz	50	-	100	%
Operating life time 4), 5)	Т	Temp.=25°C	-	100,000	-	h


1) V_{IN}-turn-on conditions

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	6

- 2) $V_{IN} = 12V$, Temp. = 25°C, $D_{PWM} = 100\%$
- 3) PWM Timing Diagram

ton, toff \geq 50 μ s.

In case of lower frequency, the deterioration of the display quality, flicker etc., may occur.

- 4) When brightness decrease 50% of minimum brightness.The average life of a LED will decrease when the LCD is operating at higher temperatures.
- 5) Life time is estimated data. (Condition : IF=60mA, Ta=25°C in chamber).

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	V_{TP}	_	3.0	3.3	3.6	V
Current consumption	Itp	1)	—	(40)	(52)	mA
Permissive input ripple voltage	V _{TPRP}	—	_	—	(50)	mVp-p
	V _{TPSIL}	"Low" level	-0.3	—	$0.3 V_{TP}$	V
Input signal voltage 2)	VTPSIH	"High" level	$0.7 V_{\mathrm{TP}}$	—	V _{TP} +0.3	V
Output simple value as 2)	VTPSOL	"Low" level	_	_	0.2VTP	V
Output signal voltage 3)	V _{TPSOH}	"High" level	$0.8 V_{\mathrm{TP}}$	_	_	V

 Condition : V_{TP}=3.3V Temp. = 25°C, 2 point touch
 Accommodation : /RESET

3) Accommodation : /CHG

7

Specification of function 6.

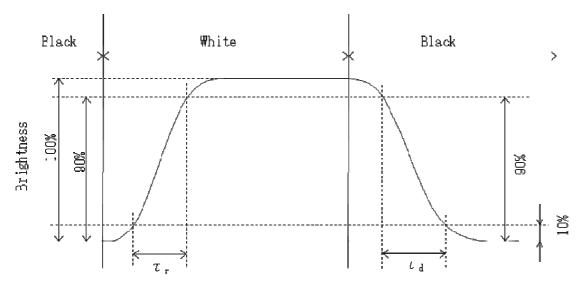
Item	Description	Note
Resolution	800~ imes~480	-
Starting point	upper left	1)
Input 2)	finger	-
Recommended touch sensor area	φ10.0 mm	-
Number of touch point	2 point	-
Linearity	less than ± 2.0 mm	3) 4)
Interface	I2C	-
OS	Windows 7, Linux, Android	-

1) Please refer to outline drawing in details.

- 2) As for input with gloves, separate discussion for feasibility is needed.
- 3) Performance of linearity is under the environment of no noise.
- 4) Linearity is not guaranteed. It is for reference only.
- 5) Structure which has common GND for touch panel and LCD is recommended.

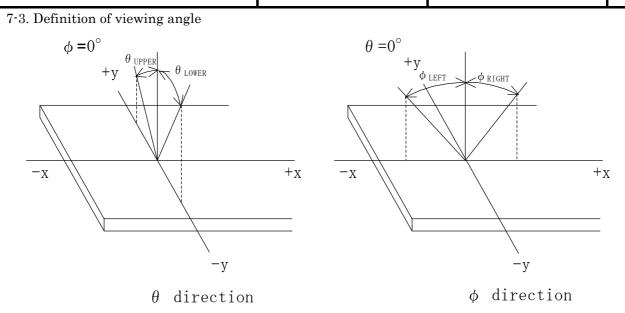
Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	8

7. Optical characteristics

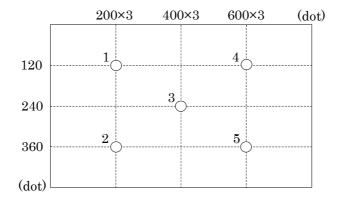

Measuring spot = ϕ 6.0mm, Temp. = 25°C

					Juring spot	ψ 0.011111, 1	p· == ==	
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	
	Rise	τr	$\theta = \phi = 0^{\circ}$	-	(18)	-	ms	
Response time	Down	τd	$\theta = \phi = 0^{\circ}$	-	(12)	-	ms	
		θ upper		-	(85)	-	deg.	
Viewing angle	range	θ lower	CD > 10	-	(85)	-		
View direction		ϕ left	$CR \ge 10$	-	(85)	-		
		ϕ right		-	(85)	-	deg.	
Contrast ratio		CR	$\theta = \phi = 0^{\circ}$	(450)	(650)	-	-	
Brightness	Brightness		IF=60mA/Line	(350)	(500)	-	cd/m ²	
	Red	x	$\theta = \phi = 0^{\circ}$	(0.550)	(0.600)	(0.650)		
		У		(0.300)	(0.350)	(0.400)		
	C	x	0 - 1 - 08	(0.285)	(0.335)	(0.385)		
Chromaticity	city Green y	У	$\theta = \phi = 0^{\circ}$	(0.520)	(0.570)	(0.620)		
coordinates	ות	x	0 - 1 - 08	(0.100)	(0.150)	(0.200)	-	
	Blue y	У	$\theta = \phi = 0^{\circ}$	(0.070)	(0.120)	(0.170)		
	White	x	$\theta = \phi = 0^{\circ}$	(0.270)	(0.320)	(0.370)		
		У		(0.295)	(0.345)	(0.395)		

7-1. Definition of contrast ratio


CR(Contrast ratio) = Brightness with all pixels "White" Brightness with all pixels "Black"

7-2. Definition of response time



Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	9

7-4. Brightness measuring points

- 1) Rating is defined as the white brightness at center of display screen(3).
- 2) 5 minutes after LED is turned on. (Ambient Temp.= 25° C)

8. Interface signals

8-1. Interface signals

No.	Symbol	Description	Note
1	BITSEL	Bit data select signal(GND or Open: 8bit mode、High: 6bit mode)	
2	SELLVDS	Mode select signal(LVDS Data mapping)	
3	GND	GND	
4	GND	GND	
5	RxIN3+	LVDS receiver signal CH3(+)	LVDS
6	RxIN3-	LVDS receiver signal CH3(-)	LVDS
7	GND	GND	
8	CK IN+	LVDS receiver signal CK(+)	LVDS
9	CK IN-	LVDS receiver signal CK(-)	LVDS
10	GND	GND	
11	RxIN2+	LVDS receiver signal CH2(+)	LVDS
12	RxIN2-	LVDS receiver signal CH2(-)	LVDS
13	GND	GND	
14	RxIN1+	LVDS receiver signal CH1(+)	LVDS
15	RxIN1-	LVDS receiver signal CH1(-)	LVDS
16	GND	GND	
17	RxIN0+	LVDS receiver signal CH0(+)	LVDS
18	RxIN0-	LVDS receiver signal CH0(-)	LVDS
19	GND	GND	
20	GND	GND	
21	VDD	+3.3V power supply	
22	VDD	+3.3V power supply	
23	SC	Scan direction control(High or Open: Normal、GND: Reverse)	1)
24	BLBRT	PWM signal(Brightness adjustment)	
25	BLEN	ON/OFF terminal voltage	
26	NC	NC	
27	VIN	+12V power supply	
28	VIN	+12V power supply	
29	GNDB	GND (Backlight)	
30	GNDB	GND (Backlight)	

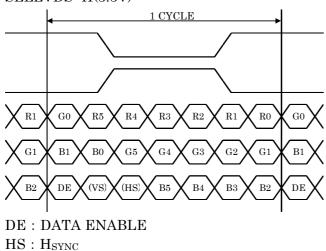
LCD connector	:	FI-X30SSLA-HF	(JAE)
Matching connector	:	FI-X30HL	(JAE)
		FI-X30HL-T	(JAE)
		FI-X30C2L-NPB	(JAE)
		FI-X30C2L-T-NPB	(JAE)

LVDS receiver	:	Embedded in ASIC
Matching LVDS transmitter	:	THC63LVDM83R(THine Electronics) or compatible

1) Scanning

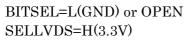
SC: High or Open

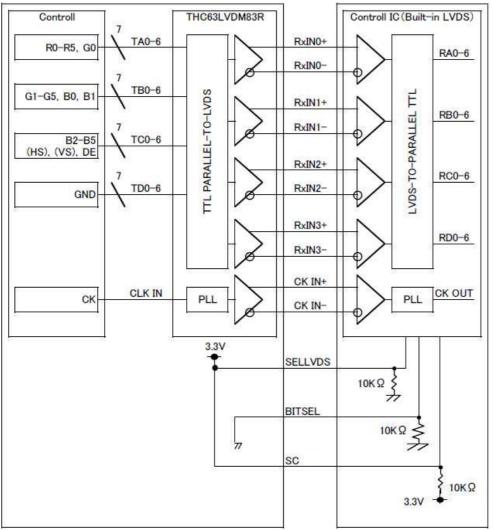
 \mathbf{SC} : GND



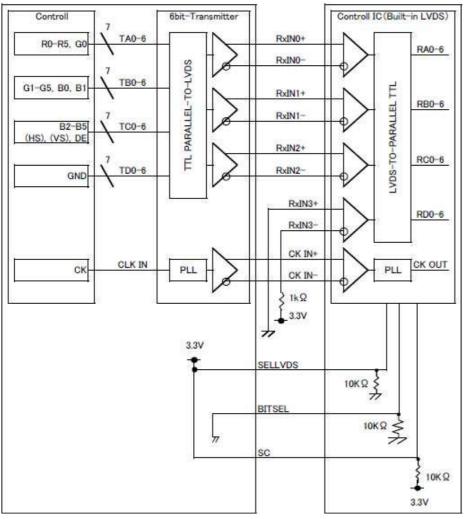
Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	11

8-2. Data mapping (6bit input / 8bit mode)


Transmitter		1Pin BITSEL = "L" or OPEN	1Pin BITSEL = "L" or OPEN
Pin No.	Data	2Pin SELLVDS = "L" or OPEN	2Pin SELLVDS = "H"
51	TA0	– R0(LSB)	
52	TA1	_	R1
54	TA2	_	R2
55	TA3	_	R3
56	TA4	_	R4
3	TA5	_	R5(MSB)
4	TA6	_	G0(LSB)
6	TB0	_	G1
7	TB1	_	G2
11	TB2	_	G3
12	TB3	_	G4
14	TB4	_	G5(MSB)
15	TB5	_	B0(LSB)
19	TB6	—	B1
20	TC0	—	B2
22	TC1	_	B3
23	TC2	_	B4
24	TC3	_	B5(MSB)
27	TC4	—	(HS)
28	TC5	_	(VS)
30	TC6	-	DE
50	TD0	_	GND
2	TD1	_	GND
8	TD2	_	GND
10	TD3	_	GND
16	TD4	_	GND
18	TD5	_	GND
25	TD6	_	GND


BITSEL=L(GND) or OPEN SELLVDS=H(3.3V)

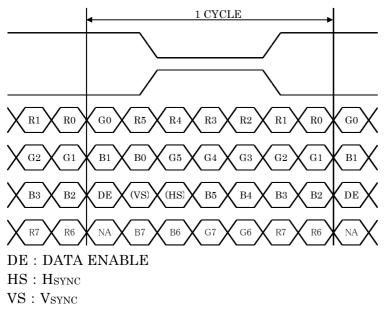
 $VS:V_{\rm SYNC}$


2) Block Diagram

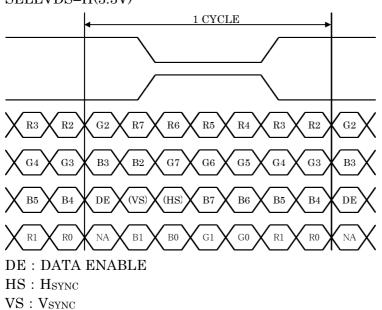
<code>%SELLVDS</code> signal line has 10 k $\Omega\,$ pulldown resister.

When using "6-bit Transmitter", please connect the unused channel of the control IC receiver as described in the diagram below.

SELLVDS signal line has 10 k Ω pulldown resister.

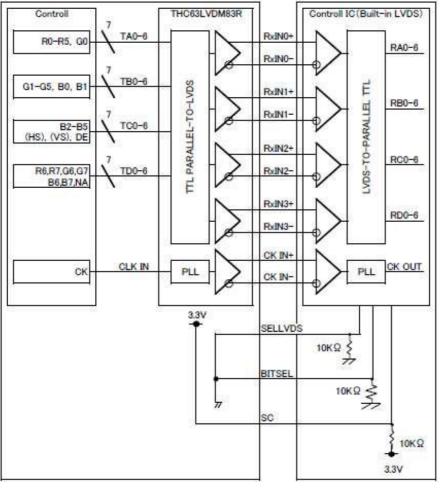


Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	14


8-3. Data mapping (8bit input / 8bit mode)

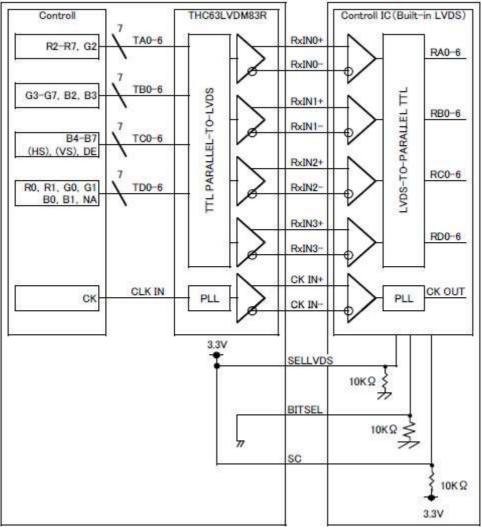
Trans		1Pin BITSEL = "L" or OPEN	1Pin BITSEL = "L" or OPEN
Pin No.	Data	2Pin SELLVDS = "L" or OPEN	2Pin SELLVDS = "H"
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	B3
20	TC0	B2	B4
22	TC1	B3	B5
23	TC2	B4	B6
24	TC3	B5	B7(MSB)
27	TC4	(HS)	(HS)
28	TC5	(VS)	(VS)
30	TC6	DE	DE
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	B6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	(NA)	(NA)

BITSEL=L(GND) or OPEN SELLVDS=L(GND) or OPEN



BITSEL=L(GND) or OPEN SELLVDS=H(3.3V)

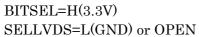
2) Block Diagram

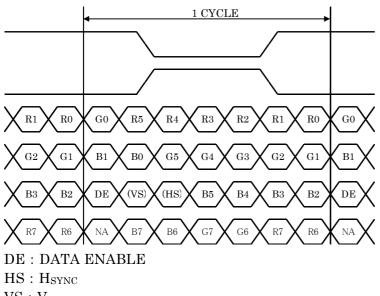

BITSEL=L(GND) or OPEN SELLVDS=L(GND) or OPEN

 $\ensuremath{\texttt{SELLVDS}}$ signal line has 10 k Ω $\ensuremath{\,\text{pulldown}}$ resister.

BITSEL=L(GND) or OPEN SELLVDS=H(3.3V)

 $\mbox{\ensuremath{\$}SELLVDS}$ signal line has 10 k Ω $\,$ pulldown resister.




Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	17

8-4. Data mapping (6bit input / 6bit mode)

1) Location of BITSEL, SELLVDS (THC63LVDM83R(THine Electro	nics) or compatible)
--	----------------------

Trans	mitter	1Pin BITSEL = "H"	1Pin BITSEL = "H"
Pin No.	Data	2Pin SELLVDS = "L" or OPEN	2Pin SELLVDS = "H"
44	TA0	R0(LSB)	_
45	TA1	R1	_
47	TA2	R2	_
48	TA3	R3	—
1	TA4	R4	_
3	TA5	R5(MSB)	_
4	TA6	G0(LSB)	_
6	TB0	G1	_
7	TB1	G2	_
9	TB2	G3	_
10	TB3	G4	_
12	TB4	G5(MSB)	_
13	TB5	B0(LSB)	—
15	TB6	B1	_
16	TC0	B2	_
18	TC1	B3	_
19	TC2	B4	_
20	TC3	B5(MSB)	—
22	TC4	(HS)	—
23	TC5	(VS)	
25	TC6	DE	_



2) Block Diagram

BITSEL=H(3.3V) SELLVDS=L(GND) or OPEN

 $\mbox{\ensuremath{\$}SELLVDS}$ signal line has 10 k Ω $\,$ pulldown resister.

8-5. Touch panel

No.	Symbol	Description	I/O	Note
1	V_{TP}	Supply voltage(+3.3V)	Р	
2	/RESET	Reset	Ι	5)
3	/CHG	State change interrupt	0	
4	SDA	Serial Interface Date	I/O	5)
5	SCL	Serial Interface Clock	I/O	5)
6	GND	GND	Р	

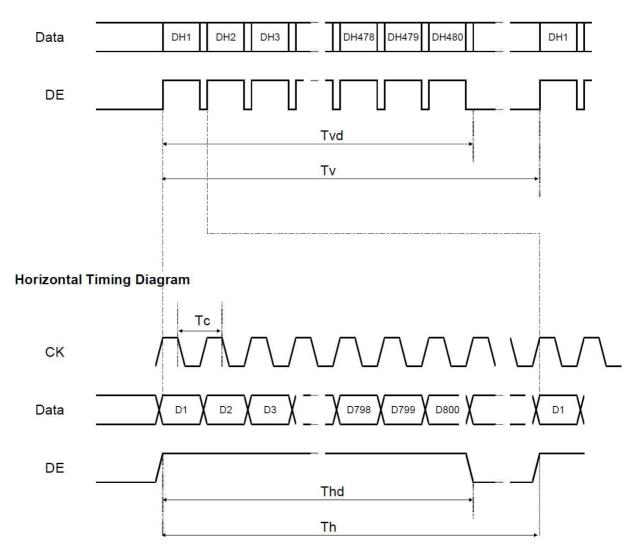
1) Please contact to us for the detail such as timing.

2) /RESET,/CGH : Pull-up inside PCB (10k Ω)
 SDA,SCL : Pull-up inside PCB (3.3k Ω)

3) Device Adress :0x4C

- 4) For the reset of hardware, "L" pulse of higher than 90nsec in power on condition is needed.
- 5) Open drain

Touch panel connector	: DF57H-6P-1.2V	(HIROSE)
Matching connector	: DF57H-6S-1.2C	(HIROSE)


9. Input timing characteristics

9-1. Timing characteristics

	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Clock (CK)	Frequency	1/Tc	29.88	33.20	36.52	MHz	
Enable signal (DE)	Horizontal Period	Th	1,024	1,056	1,088	Тс	
			-	31.8	-	$\mu \ s$	1)
	Horizontal display period	Thd		800		Тс	
	Vertical Period	Tv	487	525	550	Th	
	Vertical display period	Tvd		480		Th	
Refresh rate		fv	50	60	70	Hz	2)

1) Please set a clock frequency, a vertical dormant period, and the horizontal dormant period so that the Horizontal Period should not reach less than Min. value.

2) If the refresh rate reach less than Min. value, the deterioration of the display quality, flicker etc., may occur.(fv=1/Tv)

Vertical Timing Diagram

Spec No.	Part No.	Page
TQ3C-8EAF0-E1YAA163-00	TCG070WVLR*PC*-GD*117	21

9-2. Input Data Signals and Display position on the screen

D1, DH1 D2, DH1 D3, DH1 D1, DH2 D2, DH2 D3, DH2		D800, DH1
	R G B	
D1, DH480 D2, DH480 D3, DH480		

10. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.

 $\begin{array}{c|ccccc} TCG070WVLR^*PC^* \cdot GD^*117 & - \Box & - \Box & - \Box & MADE IN \\ & \downarrow \downarrow & \downarrow & \downarrow & & \downarrow \\ & 12 & 3 & 4 & 5 \end{array}$

- No1. No5. above indicate
 - 1. Year code
 - 2. Month code
 - 3. Date
 - 4. Version Number
 - 5. Country of origin (Japan or China)

Year	2014	2015	2016	2017	2018	2019
Code	4	5	6	7	8	9

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Code	1	2	3	4	5	6

Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	7	8	9	Х	Y	Z

11. Warranty

11-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

11-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.

12. Precautions for use

12-1. Installation of the LCD

- 1) The product shall be installed so that there is no pressure on the LSI chips.
- 2) When LCD is installed, power shall be put off. Same applies to plug in/out of FFC/FPC/Cable.
- 3) When handling connector, please do not make any excessive pressure than needed. It may damage the LCD.
- 4) Since this product is wide viewing product, occurrence level of in-plane unevenness by the external stress is different compared to current normal viewing product. So there is a possibility that in-plane unevenness will be occurred by over twist, strain giving by attaching to LCD, and over pressure to touch panel. Please be careful of stress when designing the housing.
- 5) A transparent protection sheet is attached to the touch panel. Please remove the protection film slowly before use, paying attention to static electricity.
- 6) Touch location is detected by the change of capacitance. Therefore, if there is any factor close to LCD which may change electric field, malfunction may be caused as it may give adverse effect on coordinate detecting mechanism.
- 7) When designing your case, using material composed with insulating resin is recommended for bezel of touch panel. When metal plate is used, malfunction may be caused by the occurrence of capacitance coupling on the periphery of active area.
- 8) The Bezel on the upper part of Touch-Panel recommends using the material which consists of "Insulating Resin", when designing the housing. Otherwise, Malfunction may be caused by occurring "capacitive coupling with sheet metal" in the perimeter part of active area if sheet metal is used.

12-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

12-3. LCD operation

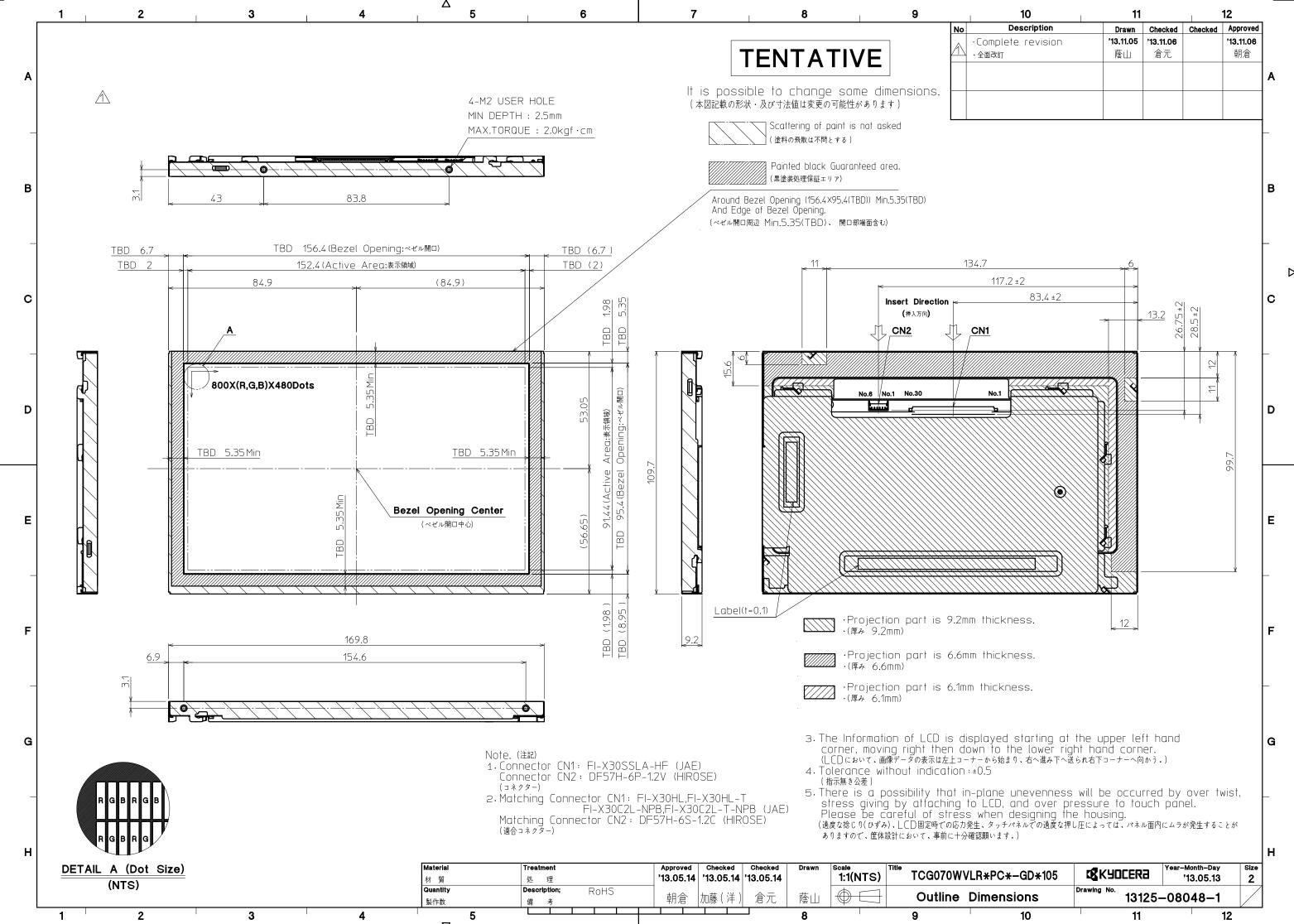
- 1) The product shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2) This product shall be operated in the atmosphere free from high temperature, high humidity, condensation and chemical atmospheres such as salt, acid and alkaline, which may cause gas corrosion, in order to prevent damage of this product and electrification.
- 3) Please select the best display pattern based on your evaluation because flicker, lines or nonuniformity or unevenness can be visible depending on display patterns.
- 4) There is possibility to cause malfunction by using the touch panel with droplets or conductive this product on the surface of touch panel, please design the software with having discussion between both companies.
- 5) It is simulated that input for this product will be done by fingers. Please let us know if the input will be done except by fingers since it needs to change the setting.

12-4. Storage

- 1) The product shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the product from direct sunlight or fluorescent light.
- 2) Always store the product so that it is free from external pressure onto it.
- 3) Please store the product board in a location that is free of dust, corrosive elements, or environmental gas (such as acid and alkali salts).

12-5. Usage

- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) Do not push or rub the panel's surface with hard to sharp objects such as knives, or the touch panel may be scratched.
- 3) In case a surface of touch panel gets dirty, please wipe gently with soft cotton by soaking in a neutral detergent or small amount of ethyl alcohol. Please exercise caution in when handling hazardous chemicals.
- 4) The product is made of glass. It may break when dropped, or vibrated excessively. Usually there is a film on the surface of the glass which would prevent broken glass from scattering, but nevertheless handle it carefully during assembly and treat it gently during use. Please take extra caution to the edge due to less strength than surface can cause glass to break.
- 5) Please implement protective countermeasures against high voltage surges such as lightning strikes. Damaged may be caused by abnormal voltage.
- 6) The product is not designed as anti-radiation product.
- 7) Always keep the product free from condensation during testing. Condensation may permanently spot or stain the polarizer and film.
- 8) Do not make over circuit board because it will result in damage.
- 9) This product has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the product is supposed to be used in a special environment, evaluate the product thoroughly beforehand and do not expose the product to chemicals such as an active gas.
- 10) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 11) Liquid crystal may leak when the product is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.



13. Reliability test data

Test item	Test condition	Test time	Jud	gement
High temp. atmosphere	80°C	(240h)	Display function Display quality Current consumption	: No defect : No defect : No defect
Low temp. atmosphere	-30°C	(240h)	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. humidity atmosphere	40°C 90% RH	(240h)	Display function Display quality Current consumption	: No defect : No defect : No defect
Temp. cycle	-30°C 0.5h R.T. 0.5h 80°C 0.5h	(10cycles)	Display function Display quality Current consumption	: No defect : No defect : No defect
High temp. operation	70°C	(500h)	Display function Display quality Current consumption	: No defect : No defect : No defect

- 1) For shelf test (including temperature cycling), after leaving this LCD for predefined time under each environment, leaving back to room temperature and make measurement after 2 hours.
- 2) Under each operating test for touch panel, after leaving touch panel conducting with 5.0V or 3.3V under each environment (without pushing touch panel active area), leaving back to room temperature and make measurement after 2 hours.
- 3) Each test item uses a test only once. The tested LCD is not used in any other tests.
- 4) The LCD is tested in circumstances in which there is no condensation.
- 5) The reliability test is not an out-going inspection.
- The result of the reliability test is for your reference purpose only. The reliability test is conducted only to examine the LCD's capability.

 ∇

<

Spec No.	TQ3C-8EAF0-E2YAA163-00
Date	October 17, 2014

KYOCERA INSPECTION STANDARD

TYPE : TCG070WVLR*PC*-GD*117

KYOCERA DISPLAY CORPORATION

Original		Designed by :	Engineering de	Confirmed by : QA dept.		
Issue Da	te	Prepared	Checked	Approved	Checked	Approved
October 17,	2014	S Oktaka	y. Jamazaki	W. Yano	D. Sato	I. Hamars

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAA163-00	TCG070WVLR*PC*-GD*117	-

	Revision record							
	Date	Design	ed by :	Engineering of	lept.	Confirmed by	r∶QA dept.	
	Date	Prepa	ared	Checked	Approved	Checked	Approved	
Rev.No.	Date	Page			Descripti	ions		
		1						

Page 1

Visuals specification

1)	Note
1)	note

			Note					
General	 Customer identified anomalies not defined within this inspection standard shall be reviewed by Kyocera, and an additional standard shall be determined by mutual consent. This inspection standard about the image quality shall be applied to any defect within the effective viewing area and shall not be applicable to outside of the area. 							
Definition of	Lumina	ion distance rature	 : 500 Lux min. : 300 mm. : 25 ± 5℃ : Directly above The dot is constantly "on" when power applied to the 					
inspection item			LCD, even when all "Black" data sent to the screen. Inspection tool: 5% Transparency neutral density filter. Count dot: If the dot is visible through the filter. Don't count dot: If the dot is not visible through the filter. RGBRGBRGB RGBRGB RGBRGB Cdot drawing>					
		Black dot defect White dot (Circular/foreign particle) Adjacent dot	The dot is constantly "off" when power applied to the LCD, even when all "White" data sent to the screen. Similar size compared to bright dot. Pixel works electrically, however, circular/foreign particle makes dot appear to be "on" even when all "Black" data is sent to the screen. Adjacent dot defect is defined as two or more bright dot defects or black dot defects.					
	External inspection Others	Bubble, Scratch, Foreign particle (Polarizer, Cell, Backlight) Appearance inspection CFL wires	Visible operating (all pixels "Black" or "White") and non operating. Does not satisfy the value at the spec. Damaged to the CFL wires, connector, pin, functional					
	Definition of size	failure or appearance failure. Definition of circle size Definition of linear size d = (a + b)/2						

Spec No.	Part No.	Page
TQ3C-8EAF0-E2YAA163-00	TCG070WVLR*PC*-GD*117	2

2) Standard

2) Standard Classification		Inspection item		Judgement standard			
Defect	Dot	Bright dot defect		-		:4	
(in LCD	defect	-9 401000		Bright dot spacing		5 mm or more	
glass)			lefect	Acceptable number		: 5	
Others				Black dot spacing		: 5 mm or more	
		2 dot join	Bright dot defect	Acceptable number		: 2	
			Black dot defect	Acceptable number		: 3	
		3 or more dots join		Acceptable number		: 0	
		Total dot defects		Acceptable number		÷5 Max	
		White dot, Dark dot					
		(Circle)		Size (mm)		Acceptable number	
				$d \leq 0.2$		(Neglected)	
				$0.2 < d \leq 0.4$		5	
				$0.4 < d \leq 0.5$		3	
				0.5 < d		0	
External i	inspection	Polarizer (Scratch)				
(Defect on				Width (mm)	Length ((mm)	Acceptable number
Polarizer or				$W \leq 0.1$. ,	(Neglected)
between Polarizer				$0.1 < W \leq 0.3$	L	≤ 5.0	(Neglected)
and LCD glass)					5.0 < L		0
0				0.3 < W –		0	
		Polarizer (Bubble)					
				Size (mm)		Acceptable number	
				d \leq 0.2		(Neglected)	
				$0.2 < d \leq 0.3$		5	
				$0.3 < d \leq 0.5$		3	
				0.5< m d		0	
		Foreign particle					
		(Circular shape)		Size (mm)		Acceptable number	
				d \leq 0.2		(Neglected)	
				$0.2 < d \leq 0.4$		5	
				$0.4 < d \le 0.5$		3	
				0.5 < d			0
		Foreign particle (Linear shape) Scratch					
				Width (mm) Length		n (mm) Acceptable number	
				$W \leq 0.0$	3 –	-	(Neglected)
				$0.03 < \mathrm{W} \le 0.1$		≤ 2.0	(Neglected)
					2.0 < L		3
					4.0 < L	I	0
				0.1 < W	_	-	(According to
							circular shape)

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

FORTEC Elektronik AG Lechwiesenstr. 9 86899 Landsberg am Lech

Phone: E-Mail: Internet: +49 8191 91172-0 sales@fortecag.de www.fortecag.de

FORTEC Elektronik AG Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 office@fortec.at www.fortec.at

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG Bahnhofstraße 3

5436 Würenlos

Phone: E-Mail: Internet:

info@altrac.ch www.altrac.ch

+41 44 7446111

Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: E-Mail: Internet: +44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet: +1 631 5804360 info@apollodisplays.com www.apollodisplays.com

Fortec Group Members

United Kingdom
