

Datasheet

InnoLux

G121XCE-LM1

G121XCE-LM1

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Doc. Number :
☐ Tentative Specification
■ Preliminary Specification
☐ Approval Specification

MODEL NO.: G121XCE SUFFIX: LM1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
陳立錚	林秋森	許文進

Version 1.0 8 June 2021 1/ **39**

- CONTENTS -

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 ELECTRICAL ABSOLUTE RATINGS	7
2.2.1 TFT LCD MODULE	7
2.2.2 BACKLIGHT UNIT	7
3. ELECTRICAL CHARACTERISTICS	8
3.1 TFT LCD MODULE	8
3.2 BACKLIGHT UNIT	9
4. BLOCK DIAGRAM	10
4.1 TFT LCD MODULE	10
5. INPUT TERMINAL PIN ASSIGNMENT	11
5.1 TFT LCD MODULE	11
5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN)	12
5.3 COLOR DATA INPUT ASSIGNMENT	13
6. INTERFACE TIMING	15
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	15
6.2 POWER ON/OFF SEQUENCE	17
6.3 THE INPUT DATA FORMAT	19
6.4 SCANNING DIRECTION	20
7. OPTICAL CHARACTERISTICS	21
7.1 TEST CONDITIONS	21
7.2 OPTICAL SPECIFICATIONS	21
8. RELIABILITY TEST CRITERIA	
9. PACKAGING	25
9.1 PACKING SPECIFICATIONS	25
9.2 PACKING METHOD	25
9.3 UN-PACKING METHOD	26
10. DEFINITION OF LABELS	27
10.1 MODULE LABEL	27
11. PRECAUTIONS	28

11.1 ASSEMBLY AND HANDLING PRECAUTIONS	28
11.2 STORAGE PRECAUTIONS	28
11.3 OTHER PRECAUTIONS	29
12. MECHANICAL CHARACTERISTICS	30

Version 1.0 8 June 2021 3/ 39

REVISION HISTORY

Version	Date	Section	Description
1.0	2021.05	All	G121XCE-LM1 Preliminary Spec. was first issued.

Version 1.0 8 June 2021 4/ 39

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G121XCE-LM1 model is a 12.1" TFT-LCD IAV module with a white LED Backlight Unit and a 20-pin 1ch-LVDS interface. This module supports 1024 x 768 XGA mode and displays 262k/16.7M colors. The converter for the Backlight Unit is built in.

1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- XGA (1024 x 768 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface
- Reversible-scan direction
- RoHS Compliance

1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	12.1	inch	
Active Area	245.76(H) x 184.32(V)	mm	(1)
Bezel Opening Area	249.0 x 187.5	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1024 x R.G.B. x 768	pixel	-
Pixel Pitch	0.240(H) x 0.240(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262k/16.7M	color	-
Display Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Module Power Consumption	TBD W (white pattern)	W	Typ. (3)

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	260	260.5	261	mm	
Module Size	Vertical (V)	203.5	204	204.5	mm	(1)
	Depth (D)	7.9	8.4	8.9	mm	
Weight			490	510	g	-
I/F connector m	nounting position	The mounting ir the screen cente	nclination of the co r within ±0.5mm a	onnector makes as the horizontal.	-	(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

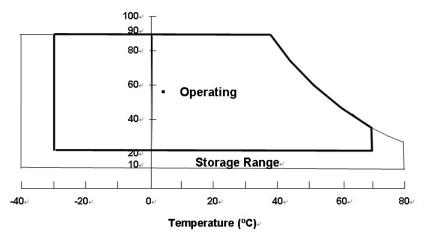
(2) Connector mounting position

(3) The Module Power Consumption is specified at 3.3V, white pattern and 100% duty for LED backlight.

Version 1.0 8 June 2021 6/ 39

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT


Itom	Cymbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Offic	
Operating Ambient Temperature	T _{OP}	-30	+75	°C	(1)(2)
Storage Temperature	T _{ST}	-40	+80	°C	(1)(2)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- (2) The absolute maximum rating values of this product are not allowed to be exceeded at any times.

 The module should not be used over the absolute maximum rating value. It will cause permanently unrecoverable function fail in such an condition

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note
		Min.	Max.	Offic	Note
Power Supply Voltage	VCC	-0.3	3.6	V	(1)

2.2.2 BACKLIGHT UNIT

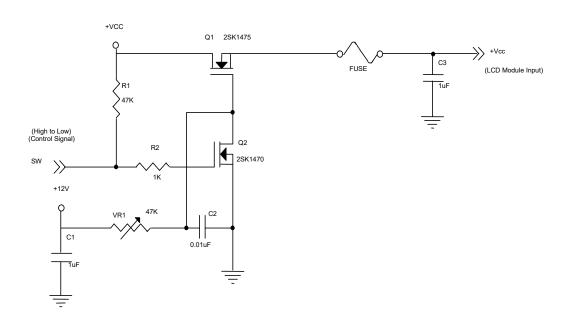
Item	Symbol	Val	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Converter Voltage	Vi	-0.3	18	V	(1), (2)	
Enable Voltage	EN		5.5	V		
Backlight Adjust	ADJ		5.5	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

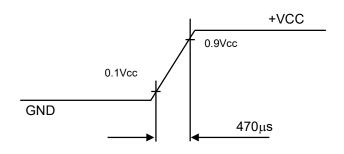
Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Version 1.0 8 June 2021 **7/39**

3. ELECTRICAL CHARACTERISTICS

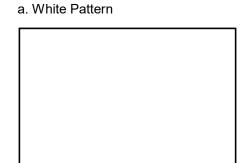

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C


Parameter	Cymbol	Value			Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Onit	Note	
Power Supply Voltage		V _{CC}	3.15	3.3	3.45	V	
Ripple Voltage		V_{RP}	-	-	200	mVp-p	
Rush Current		I _{RUSH}	-	-	4	Α	(2)
Dower Supply Current	White	Icc	-	520	620	mA	(3)a
Power Supply Current	Black		-	420	510	mA	(3)b
LVDS differential input voltage	9	Vid	100	-	600	mV	
LVDS common input voltage		Vic	1.0	1.2	1,4	V	
Power Consumption		P_L	-	1.72	2.05	W	
Differential Input Voltage for	"H" Level	V _{IH}	+100	-	-	mV	
LVDS Receiver Threshold "L" Level		V _{IL}	-	-	-100	mV	
Terminating Resistor		R_T	-	100	-	Ohm	

Note (1) The assembly should be always operated within above ranges.

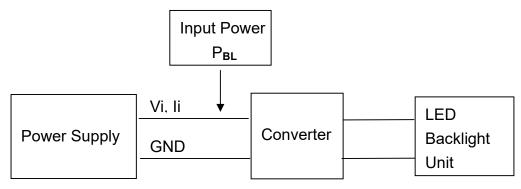
Note (2) Measurement Conditions:


Vcc rising time is 470µs

Version 1.0 8 June 2021 8/ 39

Note (3) The specified power supply current is under the conditions at Vcc = 3.3V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area

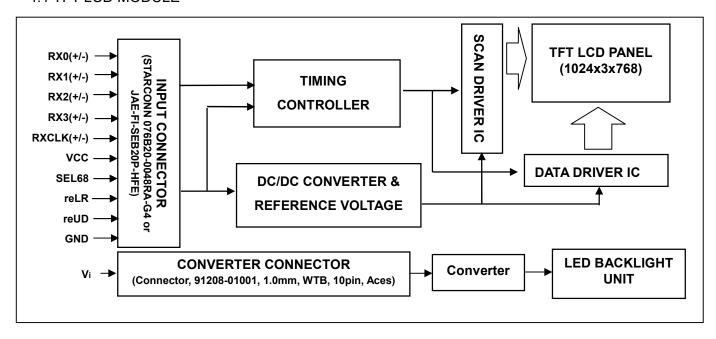

Active Area

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Darameter		Cumbal		Value		Lloit	Note
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Converter Power Sup	ply Voltage	Vi	10.8	12.0	13.2	V	
Converter Power Sup	Vi _{RP}	-	-	500	mV		
Converter Power Sup	pply Current	I_{i}	-	(1.0)	(1.16)	Α	@ Vi = 12V (Duty 100%)
Converter Inrush Cur	rent	liкusн	-	-	3.0	Α	@ Vi rising time = 20ms (Vi =12V)
Backlight Power Con	P_{BL}	-	(12.0)	(13.9)	W	@ Vi = 12V (Duty 100%)	
EN Control Lovel	Backlight on	DI ON	2.5	3.3	5.0	V	
EN Control Level	Backlight off	BLON	0		0.3	V	
PWM Control Level	PWM High Level		2.5	3.3	5.0	V	
PVVIVI CONTION Level	PWM Low Level	E_PWM	0	1	0.15	V	
PWM Noise Range		VNoise	-	1	0.1	>	
PWM Control Freque	ncy	f _{PWM}	190	200	20k	Hz	(2)
DWM Control Duty D		5		100	%	(2), Suggestion@ 190Hz≦f _{PWM} <1kHz	
PWM Control Duty R		20	-	100	%	(2), @ 1kHz≦f _{PWM} ≦20kHz	
LED Life Time	_	LL	50,000	-	-	Hrs	(3)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:


Version 1.0 8 June 2021 9/ 39

- Note (2) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%. If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.
- Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ±2 °C and Duty 100% until the brightness becomes ≤ 50% of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.

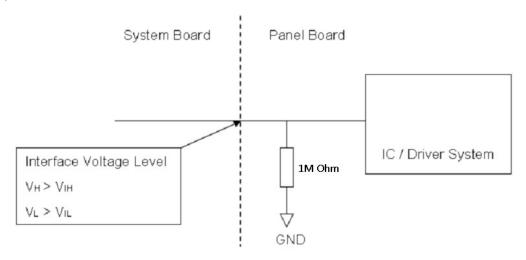
4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Version 1.0 8 June 2021 **10/39**

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE


Pin	Name	Description	Remark
1	RX3+	Differential Data Input, CH3 (Positive)	
2	RX3-	Differential Data Input, CH3 (Negative)	
3	NC	NC	
4	SEL68	LVDS 6/8 bit select function control, Low → 6 bit Input Mode High → 8bit Input Mode	Note (3) (4)
5	GND	Ground	
6	RXC+	Differential Clock Input (Positive)	
7	RXC-	Differential Clock Input (Negative)	
8	GND	Ground	
9	RX2+	Differential Data Input , CH2 (Positive)	
10	RX2-	Differential Data Input , CH2 (Negative)	
11	NC	For LCD internal use only, Do not connect	
12	RX1+	Differential Data Input , CH1 (Positive)	
13	RX1-	Differential Data Input, CH1 (Negative)	
14	NC	For LCD internal use only, Do not connect	
15	RX0+	Differential Data Input, CH0 (Positive)	
16	RX0-	Differential Data Input, CH0 (Negative)	
17	reLR	Horizontal Reverse Scan Control, Low → Normal Mode. High → Horizontal Reverse Scan	Note (3) (4)
18	reUD	Vertical Reverse Scan Control, Low → Normal Mode, High → Vertical Reverse Scan	Note (3) (4)
19	VCC	Power supply	
20	VCC	Power supply	

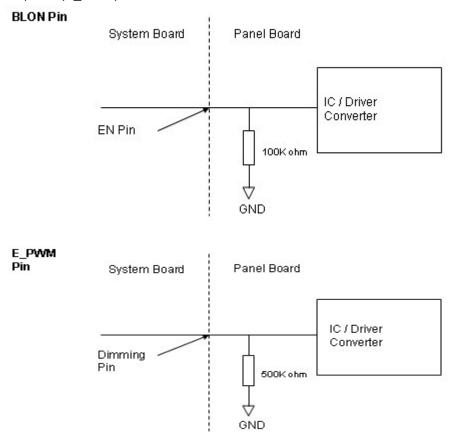
Note (1) Connector Part No.: P-Two 187191-20101-3 or STARCONN 076B20-0048RA-G4 or equivalent.

Note (2) User's connector Part No.: JAE FI-SE20ME or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V.

Note (4) SEL68, reLR, reUD

Version 1.0 8 June 2021 11/ 39


5.2 BACKLIGHT UNIT(CONVERTER CONNECTOR PIN)

Pin	Symbol	Description	Remark
1	Vi	Converter input voltage	12V
2	Vi	Converter input voltage	12V
3	Vi	Converter input voltage	12V
4	Vi	Converter input voltage	12V
5	V_{GND}	Converter ground	Ground
6	V_{GND}	Converter ground	Ground
7	V_{GND}	Converter ground	Ground
8	V_{GND}	Converter ground	Ground
9	EN	Enable pin	3.3V, Note (3)
			PWM Dimming
10	ADJ	Backlight Adjust	(190-210Hz, Hi: 3.3V _{DC} ,
			Lo: 0V _{DC}), Note (3)

Note (1) Connector Part No.: 91208-01001-H01 (ACES) or equivalent.

Note (2) User's connector Part No.: 91209-01011 (ACES) or equivalent--

Note (3) EN(BLON), ADJ(E_PWM) as shown below:

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

									С	ata S		al							
	Color			Re						Gre						Bl			
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

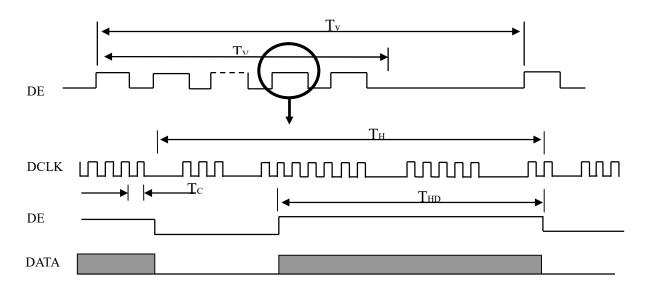
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

)ata	Siç	gnal										
	Color					ed								reen								ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 1 1	0 1 0 0 0 1 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1 1	0 1 0 0 0 1 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	00101011	0 0 1 0 1 0 1 1	0 0 1 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1 1	0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 1 1 0 1	0 0 1 1 1 0 1	0 0 1 1 1 0 1	0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0 1	0 0 1 1 1 0
Gray Scale Of Red	Red(0) / Dark Red(1) Red(2) : : Red(253) Red(254) Red(255)	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 1 : 0 1 1	0 1 0 : : 1 0 1	000000	000000	000000	0 0 : : 0 0 0	000000	000000	000:::000	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 : : : 0 0 0	0 0 0 : :: 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : : 0 0 0	0 0 0 : : : 0 0 0
Gray Scale Of Green	Green(0)/ Dark Green(1) Green(2) : : Green(253) Green(254) Green(255)	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : : 0 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0
Gray Scale Of Blue	Blue(0) / Dark Blue(1) Blue(2) : : Blue(253) Blue(254) Blue(255)	0 0 0 : : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : : 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 1 : 0 1 1	0 1 0 : : 1 0 1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

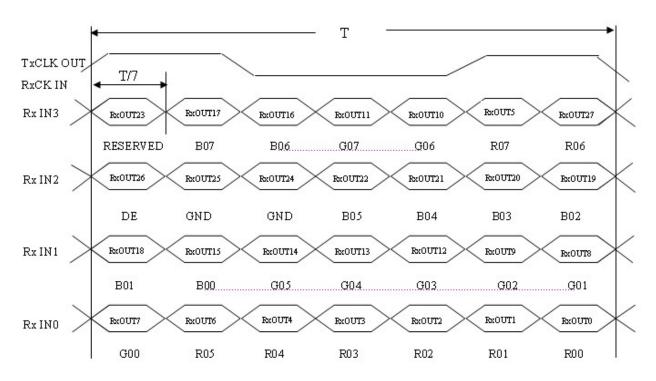
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

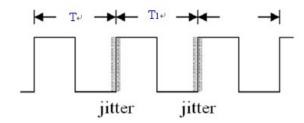

The input signal timing specifications are shown as the following table and timing diagram.

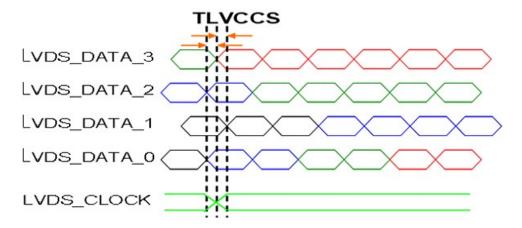
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	57.7	65	73.6	MHz	-
	Period	Tc	13.6	15.4	17.3	ns	
	Input cycle to cycle jitter	T _{rcl}			200	ns	(a)
	Input Clock to data skew	TLVCCS	-0.02*Tc		0.02*Tc	ps	(b)
LVDS Clock	Spread spectrum modulation range	F _{clkin_mod}	0.987*Fc		1.013*Fc	MHz	(0)
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(c)
	High Time	T _{ch}		4/7		T_ch	
	Low Time	T _{cl}		3/7		T_ch	
	Frame Rate	Fr		60		Hz	Tv=Tvd+Tvb
Vertical Display	Total	Tv	776	806	838	Th	-
Term	Active Display	Tvd	768	768	768	Th	-
	Blank	Tvb	8	38	70	Th	-
III.	Total	Th	1240	1344	1464	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	1024	1024	1024	Тс	-
101111	Blank	Thb	216	320	440	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

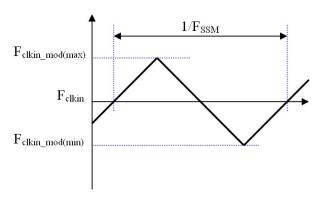
Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM

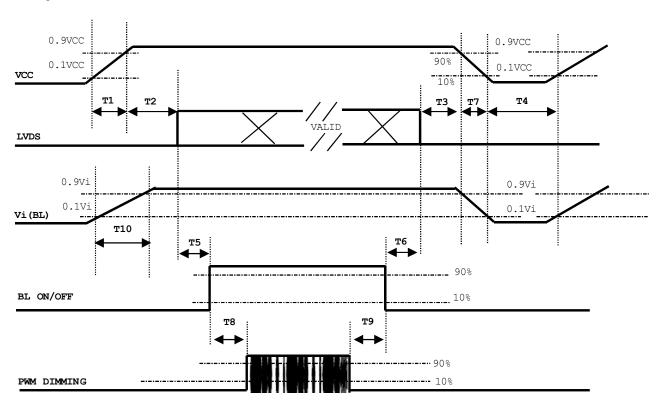

Version 1.0 8 June 2021 15/ 39


TIMING DIAGRAM of LVDS

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



Note (b) Input Clock to data skew is defined as below figures.


Version 1.0 8 June 2021 16/ 39

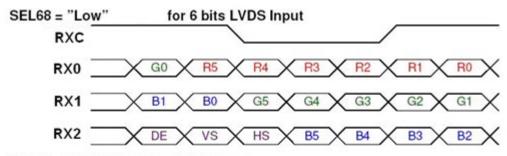
Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

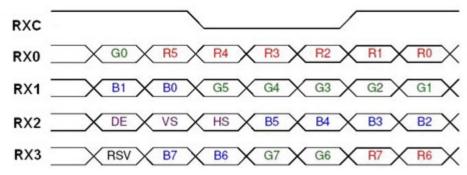
6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.


Version 1.0 8 June 2021 17/ **39**


- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".

Doromotor		Units				
Parameter	Min	Тур	Max	Ullits		
T1	0.5		10	ms		
T2	0		50	ms		
T3	0		50	ms		
T4	500			ms		
T5	450			ms		
T6	200			ms		
T7	10		100	ms		
T8	10			ms		
Т9	10			ms		
T10	20		50	ms		

6.3 THE INPUT DATA FORMAT

SEL68 = "High" for 8 bits LVDS Input

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Note (3) Output signals from any system shall be low or Hi-Z state when VCC is off.

6.4 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

Fig.2 Reverse Scan

Fig.3 Reverse Scan

Fig.4 Reverse Scan

- Fig. 1 Normal scan (pin 17, reLR = Low, pin 18, reUD = Low)
- Fig. 2 Reverse scan (pin 17, reLR = High, pin 18, reUD = Low)
- Fig. 3 Reverse scan (pin 17, reLR = Low , pin 18, reUD = High)
- Fig. 4 Reverse scan (pin 17, reLR = High, pin 18, reUD = High)

7. OPTICAL CHARACTERISTICS

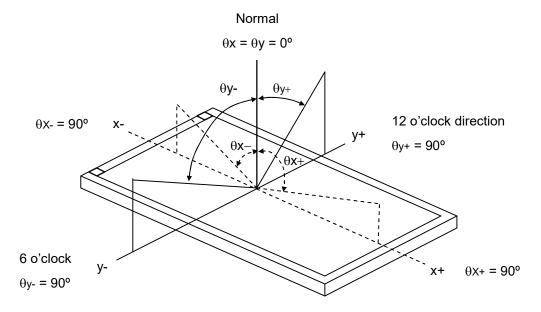
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit					
Ambient Temperature	Та	25±2	оС					
Ambient Humidity	Ha	50±10	%RH					
Supply Voltage	Accordin	According to typical value and tolerance in						
Input Signal	"ELEG	"ELECTRICAL CHARACTERISTICS"						
PWM Duty Ratio	D	100	%					

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in above and stable environment shown in Note (5).

Item	1	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Dad	Rx		0.602	0.652	0.702	-		
	Red	Ry		0.288	0.338	0.388	-		
	Croon	Gx		0.274	0.324	0.374	-		
Color	Green	Gy		0.557	0.607	0.657	-	(1) (5)	
Chromaticity	Blue	Вх	θX=0°, θY =0°	0.103	0.153	0.203	-	(1), (5)	
	Blue	Ву	Grayscale Maximum	0	0.048	0.098	-		
	White	Wx		0.263	0.313	0.363	-		
	vvnite	Wy		0.279	0.329	0.379	-		
Center Luminan	ce of White	L _C		750	1000	-	cd/m ²	(4), (5)	
Contrast Ratio		CR		700	1000	-	-	(2), (5)	
Poononee Time		T _R	0 -00 0 -00	-	13	18	ms	(2)	
Response Time		T _F	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	-	12	17	ms	(3)	
White Variation		δW	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		1.25	1.4	-	(5), (6).	
	Horizontol	θ_{x} +		85	89	-			
Viewing Angle	Horizontal	θ_{x} -	CD>10	85	89	-	Dog	(1) (5)	
	Vertical	θ _Y +	CR≥10	85	89	-	Deg.	(1), (5)	
	vertical	θ _Y -		85	89				

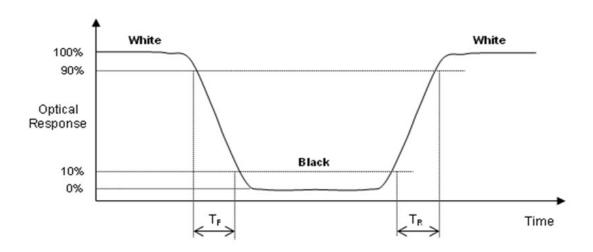

Definition:

Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63)

White: Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B).

Note (1) Definition of Viewing Angle (θx , θy):

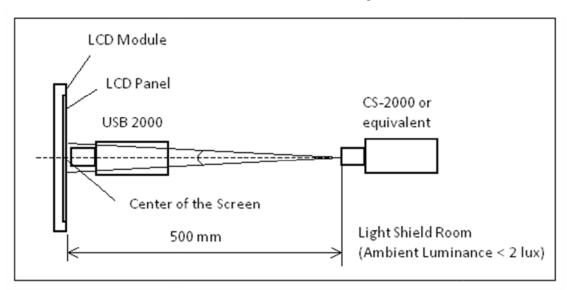


Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = White / Black

Note (3) Definition of Response Time (T_R, T_F):

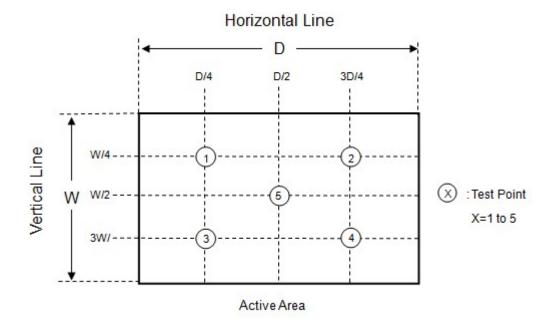


Note (4) Definition of Luminance of White (L_C):

Measure the luminance of White at center point

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with the module drawing.



Note (6) Definition of White Variation (δW):

Measure the luminance of White at 9 points.

Luminance of White: L(X), where X is from 1 to 9.

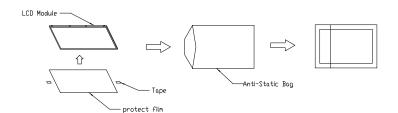
$$\delta W = \frac{\text{Minimum } [L(1) \text{ to } L(5)]}{\text{Maximum } [L(1) \text{ to } L(5)]} \times 100\%$$

Version 1.0 8 June 2021 23/ 39

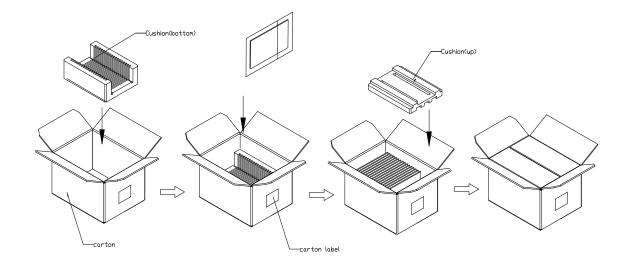
8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	80°C, 240 hours	
Low Temperature Storage Test	-40°C, 240 hours	
Thermal Shock Storage Test	-30°C, 0.5hour ←→75°C, 0.5hour; 1hour/cycle,100cycles	(1)(2)
High Temperature Operation Test	75°C, 240 hours	(1)(2) (4)(5)
Low Temperature Operation Test	-30°C, 240 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	
Shock (Non-Operating)	200G, 2ms, half sine wave, 1 time for ± X, ± Y, ± Z.	(2)(2)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(2)(3)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 75 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

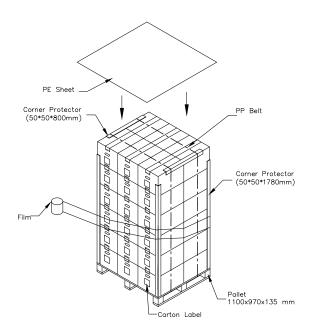


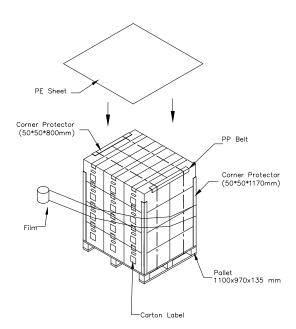
9. PACKAGING

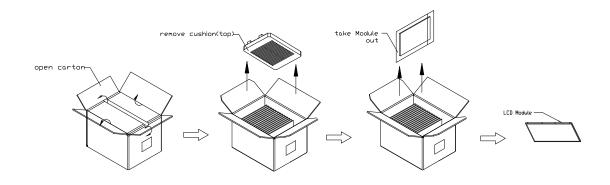

9.1 PACKING SPECIFICATIONS

- (1) 18pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 10.9Kg (18 modules per box)

9.2 PACKING METHOD


- (1) 18 pcs Modules/1 box
- (2) Carton dimensions : 465(L)x362(W)x314(H)mm

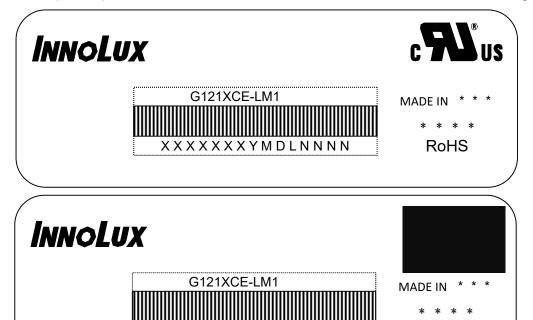

Version 1.0 8 June 2021 **25/39**


Sea / Land Transportation (40ft Container)

Air Transportation

9.3 UN-PACKING METHOD

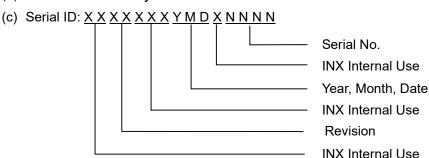
Version 1.0 8 June 2021 **26/39**



RoHS

10. DEFINITION OF LABELS

10.1 MODULE LABEL


The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

XXXXXXXYMDLNNNN

(a) Model Name: G121XCE-LM1

(b) * * * * : Factory ID

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

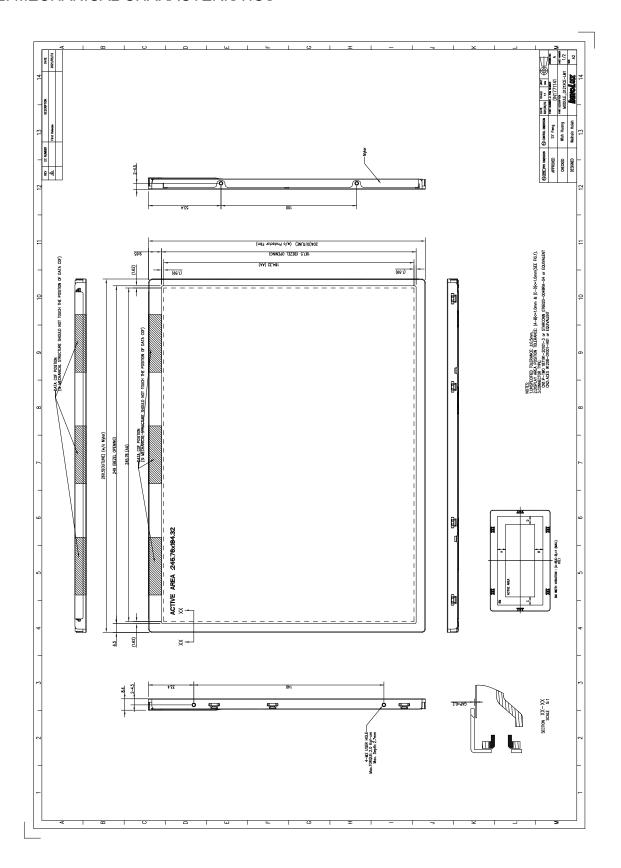
11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

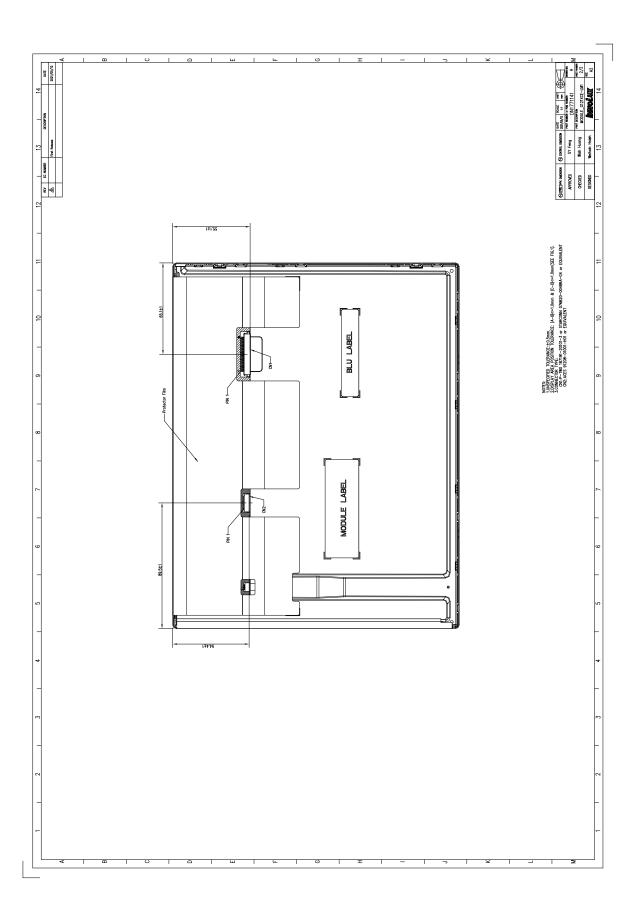
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

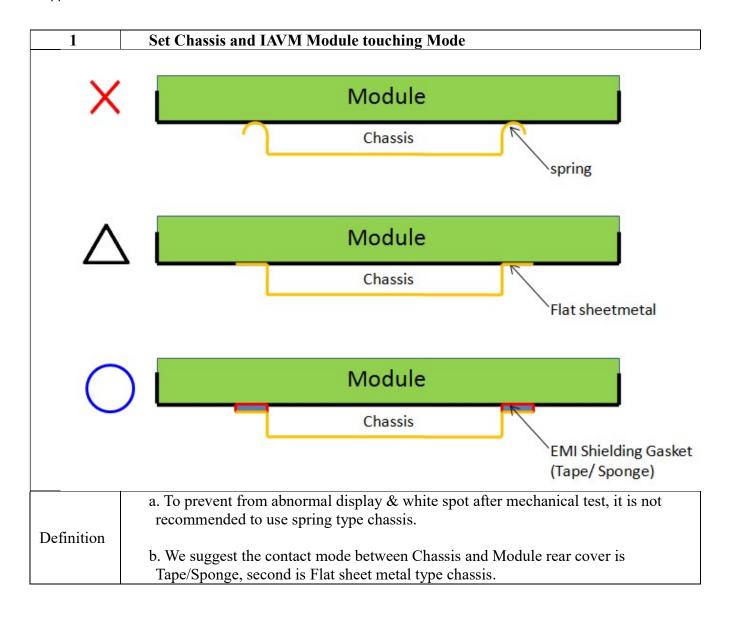
- (1)When storing for a long time, the following precautions are necessary.
 - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
 - (b) The polarizer surface should not come in contact with any other object.
 - (c) It is recommended that they be stored in the container in which they were shipped.
 - (d) Storage condition is guaranteed under packing conditions.
 - (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

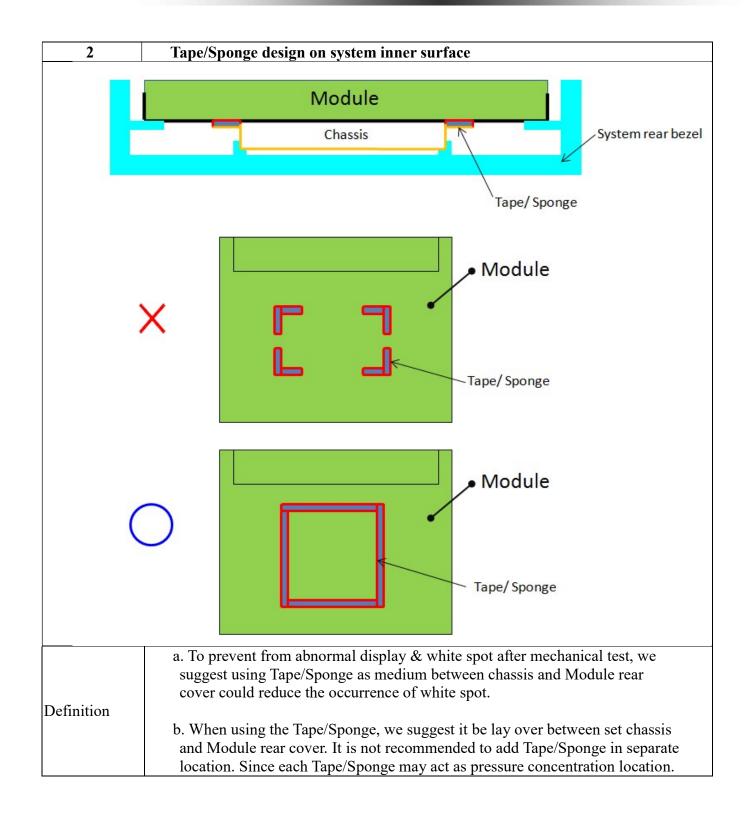


11.3 OTHER PRECAUTIONS

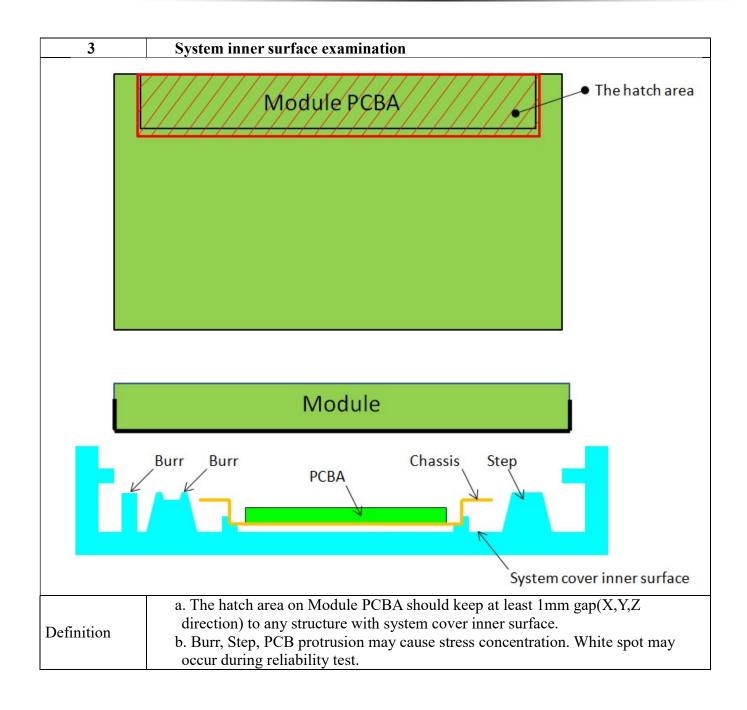

- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)(Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
- (3) Abnormal condition just means conditions except normal condition.

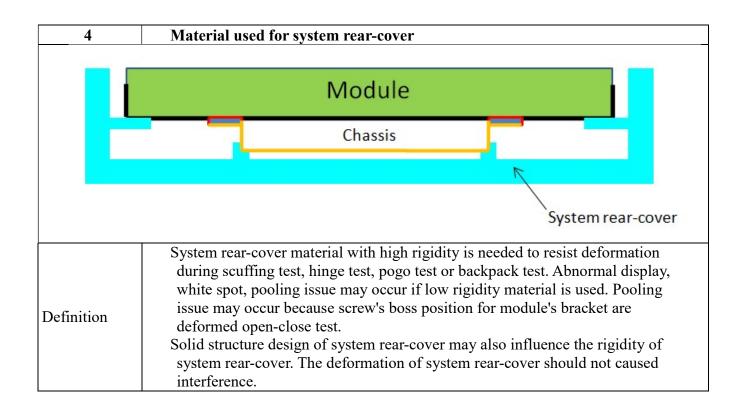
12. MECHANICAL CHARACTERISTICS

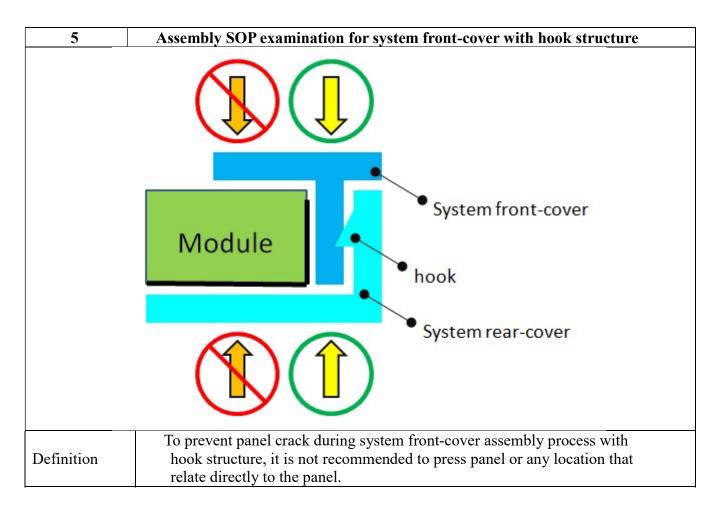



Version 1.0 8 June 2021 31/ 39

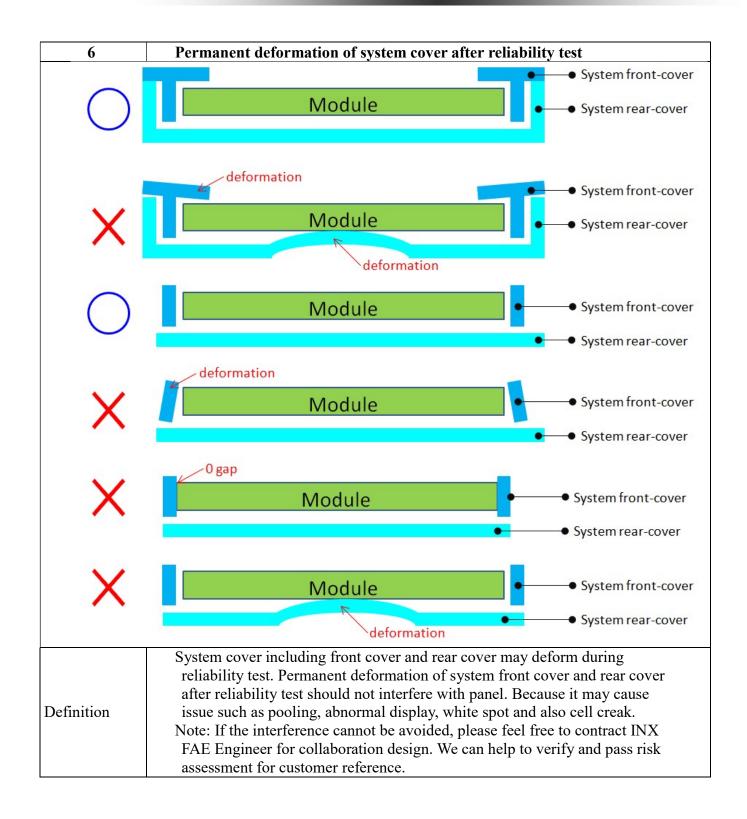
Appendix . SYSTEM COVER DESIGN NOTICE

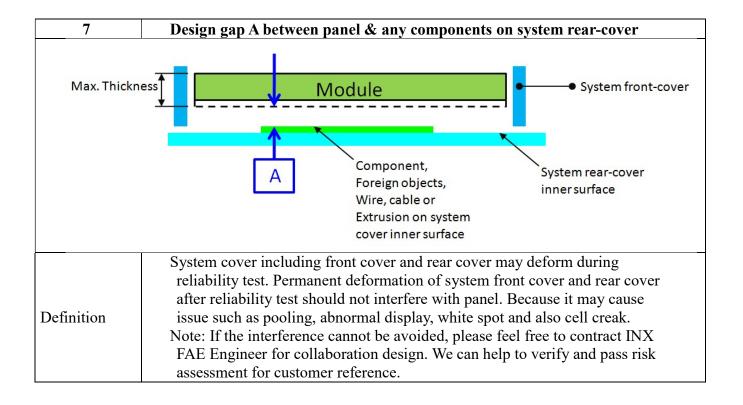


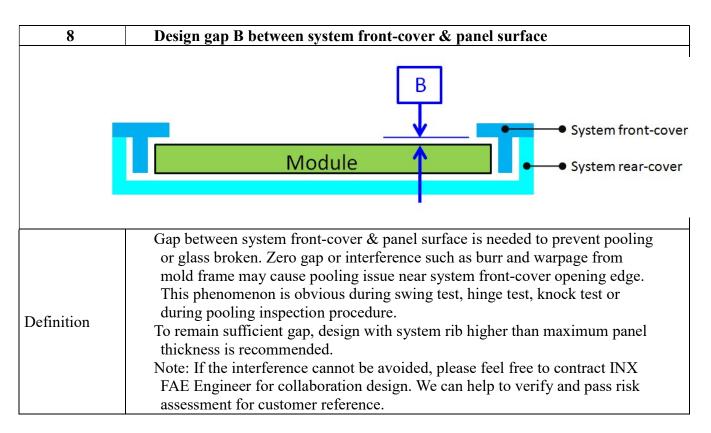

Version 1.0 8 June 2021 33/ 39



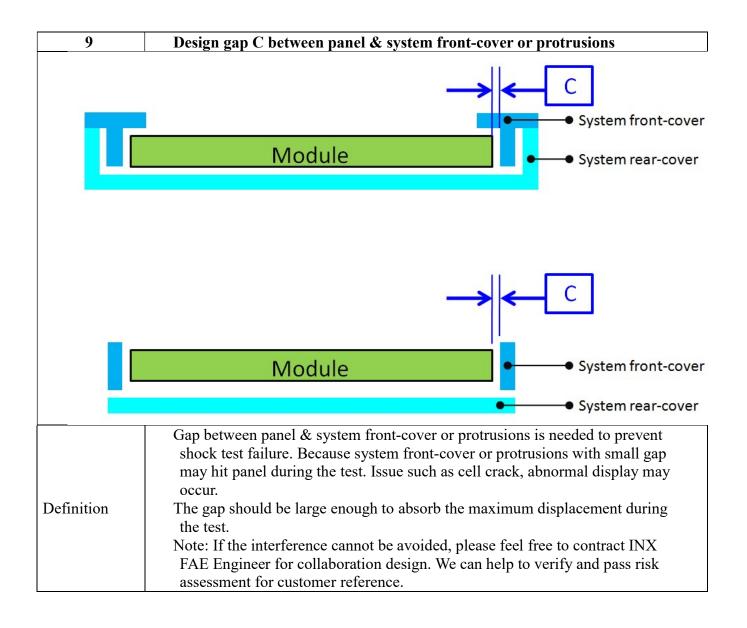
Version 1.0 8 June 2021 34/ 39

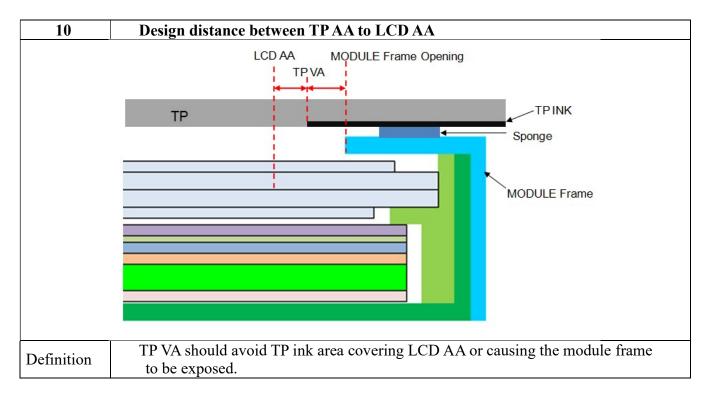


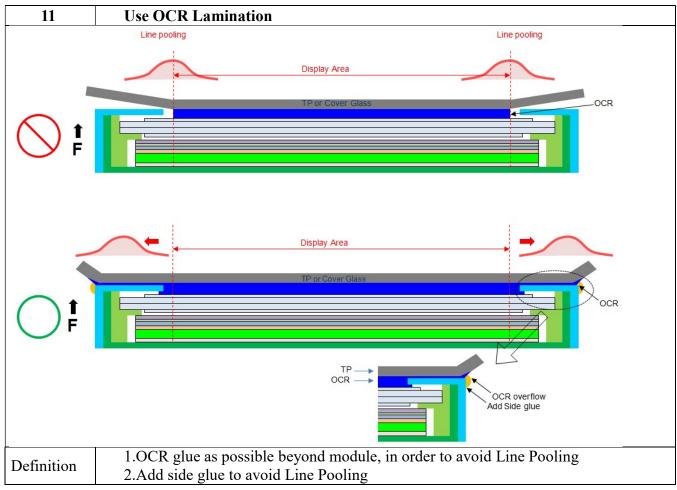

Version 1.0 8 June 2021 35/ 39



Version 1.0 8 June 2021 **36/39**




Version 1.0 8 June 2021 **37/ 39**



Version 1.0 8 June 2021 38/ 39

Version 1.0 8 June 2021 **39/ 39**

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk
Internet: www.displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: +1 631 5804360
E-Mail: info@apollodisplays.com
Internet: www.apollodisplays.com