

Datasheet

Tianma

P1210XGF1MB00

TI-01-019

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

MODEL NO :

TIANMA Confirmed:

Prepared by

Chunliang_Qian

Approved by

Xiaoxing_Ding

P1210XGF1MB00

SPEC VERSION:	V1.5
ISSUED DATE:	2021-10-25
	ry Specification duct Specification
Customer :	
Approved by	Notes

Checked by

Zhijie_Song

This technical specification is subjected to change without notice

Table of Contents

Tab	ole of Contents	2
Red	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	5
3	Absolute Maximum Ratings	7
4	Electrical Characteristics	
5	Timing Chart	10
6	Optical Characteristics	20
7	Environmental / Reliability Test	24
8	Mechanical Drawing	25
9	Packing Drawing	
10	Precautions For Use of LCD Modules	
	Incoming Inspection Standard	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2021-04-12	Preliminary Specification Released.	Chunliang_qian
1.1	2021-05-10	modify Selection of scan direction at page 5 & 18	Chunliang_qian
1.2	2021-05-31	modify The circuit diagram of BLU at page 6	Chunliang_qian
1.3	2021-08-31	modify response Time	Chunliang_qian
1.4	2021-09-13	modify BLU Driving	Chunliang_qian
1.5	2021-10-25	modify LED Driver	Chunliang_qian

P1210XGF1MB00

1 General Specifications

	Feature	Spec	
	Size	12.1 inch	
	Resolution	1024(RGB) x 768	
	Technology Type	SFT	
Display Spec	Pixel Configuration	R.G.B. Vertical Stripe	
Display Spec.	Pixel Pitch (mm)	0.240 (H) × 0.240 (V)	
	Display Mode	Transmissive, Normally Black	
	Surface Treatment(Up Polarizer)	HC	
	Viewing Direction	All direction	
	LCM (W x H x D) (mm)	260.5x203x9.5	
	Active Area(mm)	245.76*184.32	
Mechanical	With /Without TSP	Without Touch Screen	
Characteristics	Matching Connection Type	FI-SEB20P-HFE	
	Weight (g)	(550g)	
Electrical	Interface	1port LVDS 8bit / 6-bit	
Characteristics	Color Depth	16.7M&262K	

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2 : Requirements on Environmental Protection: Q/S0002

Note 3 : LCM weight tolerance : +/- 5%

2 Input/Output Terminals

2.1 TFT LCD Panel (CN1)

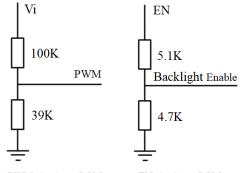
Connector type: JAE FI-SEB20P-HFE

Pin No. Symbol		Symbol	Signal	Input data	Input data	Remark					
FIII	INO.	Symbol	Signal	MAP A	MAP B	signal: 6-bit	S				
1	Α	D3+	Pixel data	R0-R1,G0-G1,B0-B 1	R6-R7,G6-G7,B6-B 7	-					
	В	GND	Ground			Ground					
2	Α	D3-	Pixel data	R0-R1,G0-G1,B0-B 1	R6-R7,G6-G7,B6-B 7	-					
	В	GND	Ground			Ground					
3	3	DPS	Selection of scan direction	High : Low or Open :	Normal scan Reverse scan						
4	1	FRC	Selection of the number of colors	Hi	gh	Low or Open					
	5	GND	Ground		Ground						
6	6	CLK+	Pixel clock		Pixel clock						
7	7	CLK-	I IXEI CIOCK		Pixel Clock						
8	3	GND	Ground	Ground					Ground		
Ş	9	D2+	Pixel data	B4-B7,DE	7,DE B2-B5,DE						
1	0	D2-	i ixei uala	54-57,DE	D2-00,L	, L					
1	1	GND	Ground		Ground						
1	2	D1+	Pixel data	G3-G7,B2-B3	G1-G5,B0	-R1					
1	3	D1-	1 ixel data	00 07,62 00	01 00,50						
1	4	GND	Ground		Ground						
1	5	D0+	Pixel data	R2-R7,G2	R0-R5 0	÷0					
1	6	D0-	i indi uala	112-111,92	R0-R5,G0						
1	7	GND	Ground								
1	8	MSL	Selection of LVDS input map	Low(Note1) High or Open Low(Note2)							
1	9	VCC	Power supply	Power supply							
2	0	VCC	i owei suppiy								

Note1: FRC is high Note2: FRC is low

Note3: Detail can refer to Page 13~14

2.1 Backlight (CN2)


Connector type: SM10B-SHLS-TF(LF)

No	Symbol	I/O	Description	Remarks
1	Vi	Р	Converter input voltage	
2	Vi	Р	Converter input voltage	
3	Vi	Р	Converter input voltage	
4	Vi	Р	Converter input voltage	
5	V_{GND}	Р	Converter ground	
6	V_{GND}	Р	Converter ground	
7	V_{GND}	Р	Converter ground	
8	V_{GND}	Р	Converter ground	
9	EN	I	Enable pin	Default L(Note1)
10	PWM	I	Backlight Adjust	Default H(Note2)

I/O definition:

I----Input O----Output I/O----Input/Output P----Power/Ground N—No Connect

Note1: The circuit diagram of PWM on LCM is as follows Note2: The circuit diagram of EN on LCM is as follows

PWM circuit on LCM EN circuit on LCM

P1210XGF1MB00

3 Absolute Maximum Ratings

	Parameter		Symbol	Rating	Unit	Remarks	
Power supply voltage	LCD panel sig		VCC	-0.5 to +5.0	V		
, chage	LED (driver	Vi	9V to 28V			
	Logic Input	Low level	VIL	0 to 0.3VCC	V	Ta= 25°C	
Input voltage	Voltage	High level	ViH	0.7VCC to VCC	V		
for signals	LED	drivor	PWM	TBD to +(5.5)	V		
	LED	unver	EN	TBD to (15)	V		
	Inrush current		Irush	-	Α		
S	torage temperatur	e	Tst	-40 to +90	°C	-	
Operation	omnoratura	Front surface	TopF	-30 to +80	°C	Note1	
Operating t	emperature	Rear surface To		-30 to +80	°C	Note2	
				≤ 95	%	Ta ≤ 40°C	
				≤ 85	%	40°C < Ta ≤ 50°C	
	Relative humidity Note4		RH	≤ 55	%	50°C < Ta ≤ 60°C	
				≤ 36	%	60 < Ta ≤ 70°C	
				≤ 24	%	70 < Ta ≤ 80°C	
	Absolute humidity Note3		АН	≤ 70 Note4	g/m ³	Ta = 80°C	

Note1: Measured at LCD panel surface (including self-heat)

Note2: Measured at LCD module's rear shield surface (including self-heat)

Note3: No condensation

Note4: Water amount at Ta= 80°C and RH= 24%

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

 $(Ta = 25^{\circ}C)$

Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VCC	(3.2)	3.3	(3.4)	V	-
Power supply current		ICC	-	(TBD) Note1	(TBD) Note2	mA	at VCC= 3.3V
Permissible ripple voltage		VRPC	-	-	100	mVp-p	for VCC
Differential input threshold	High	VTH	-	-	(+100)	mV	at VCM= 1.2 V
voltage	Low	VTL	(-100)	1	-	IIIV	Note3
Input voltage for	High	VFH1	(0.7VCC)	ı	(VCC)	V	CMOS level
DPS,FRC and MSL signal	Low	VFL1	0	-	0.3VCC	-	
Input current for	High	IFH1	-		(-300)	μА	-
DPS,FRC and MSL signal	Low	IFH1	(-300)	-	-	F-11	

Note1: Checkered flag pattern [by IEC 61747-6]

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS receiver

4.2 Driving Backlight

(Ta= 25°C)

P							(1a= 25 O)
Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage	ge	Vi	(11.2)	12.0	(12.8)	V	Note1
Power supply curre	nt Note2	li	-	192 (TBD)	(TBD) Note3	mA	Note4
Permissible ripple \	oltage/	VRPD	-	-	200	mVp-p	for VDD
Input voltage for	High	VDFH1	(1.2)	-	(5)	V	
PWM signal	Low	VDFL1	0	-	(0.35)	٧	-
Input voltage for	High	VDFH2	TBD	(12)	TBD	V	
EN signal	Low	VDFL2	0	-	(1.4)	V	-
PWM freque	PWM frequency		(200)	-	(10K)	Hz	Note5, Note6
PWM duty ratio		DR _{PWM}	(5%)	-	(100)	%	Note7
PWM pulse width		tPWH	TBD	-	-	μS	110.07
LED Life Ti	me	LT	-	50000	-	Hrs	Note8

Note1:When designing of the power supply, take the measures for the prevention of surge voltage.

Note2:The power supply lines (Vi and GND) may have ripple voltage during luminance control of LED. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on. Put a capacitor between the power supply

P1210XGF1MB00

lines (Vi and GND) to reduce the noise if necessary.

Note3:This value excludes peak current such as overshoot current.

Note4:At the maximum luminance control

Note5:A recommended f_{PWM} value is as follows.

$$f_{PWM} = \frac{2n-1}{4} \times fv$$

(n = integer, fv = frame frequency of LCD module)

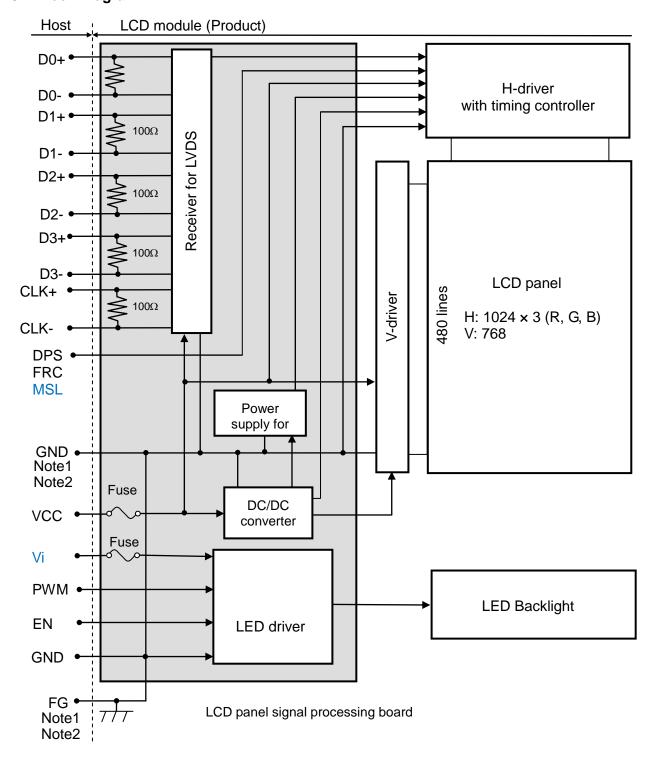
Note6:Depending on the frequency used, some noise may appear on the screen, please conduct a thorough evaluation.

Note7:The recommended PWM frequency is 200Hz to 10kHz, but the LED current cannot be 100% proportional to duty cycle, especially for high frequency and low duty ratio. While the EN signal is high, do not set the tPWH (PWM pulse width) is less than 0.1µs. It may cause abnormal working of the backlight. In this case, turn the backlight off and then on again by EN signal.

Note8: Optical performance should be evaluated at Ta=25°C only.

If LED is driven by high current, high ambient temperature & humidity condition.

The life time of LED will be reduced.


Operating life means brightness goes down to 50% of initial brightness.

Typical operating life time is estimated data.

4.3 Block Diagram

Note1:GND (Signal ground) is connected to FG (Frame ground) in the LCD module Note2:GND and FG must be connected to customer equipment's ground, and it is recommended that these grounds to be connected together in customer equipment.

P1210XGF1MB00

4.4 Fuse

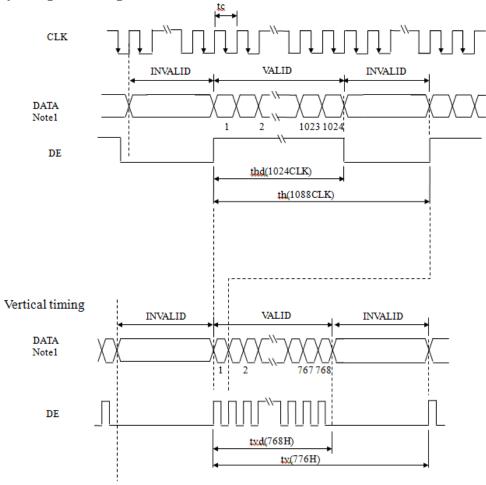
Doromotor		Fuse	Doting	Fusing	Domarks	
Parameter	Type Supplier		Rating	characteristics	Remarks	
VCC	(FCC16152ABT	KAMAYA	1.5A	250%/5s max		
VCC	P)	KAWATA	36V	250%/55 IIIax	Natad	
Vi	(FCC16202ABT	KAMAYA.	2A	250%/5s max	Note1	
VI	P)	KAWATA.	36 V	250 /6/55 IIIax		

Note1:The power supply's rated current must be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

5 Timing Chart

5.1 Timing Characteristics

Parameter			Symbol	min.	typ.	max.	Unit	Remarks
CLK	Fre	quency	1/tc	(50.34)	50.66	(65.34)	MHz	19.739ns (typ.)
	Horizontal	Cycle	th	-	21.477	-	μS	46.561 kHz (typ.)
				1084	1,088	1214	CLK	(-7 -7)
DE		Display period	thd		1024		CLK	-
	Vertical	CVCIE	41.4	-	16.666	-	ms	60.0Hz (typ.)
	(One frame)		tv	774	776	897	Н	60.0⊓2 (typ.)
		Display period	tvd		768		Н	-

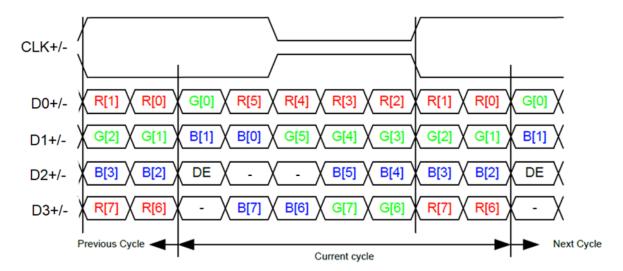

Note1: Definition of parameters is as follows.

tc= 1CLK, th= 1H

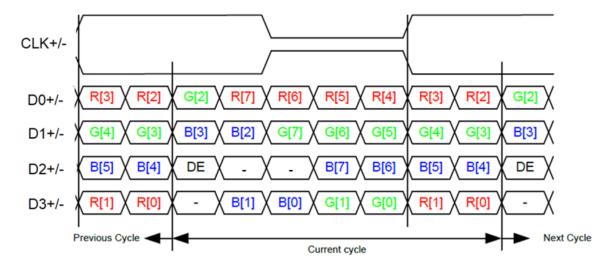
Note2: See the data sheet of LVDS transmitter.

Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).

5.2 Input signal timing chart



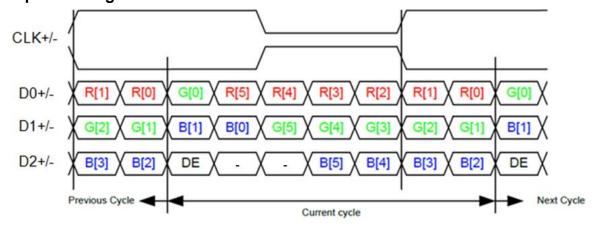
Note1:DATA = R0-R7, G0-G7, B0-B7



5.3 LVDS data input format

Input data signal: 8-bit

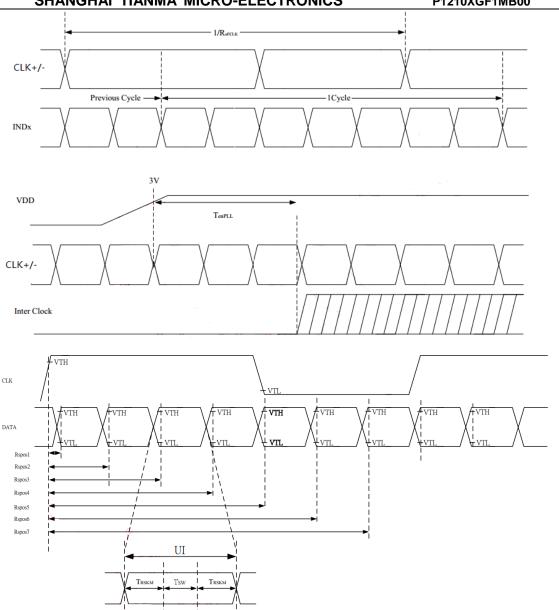
VESA (MAP B)format


JEIDA (MAP A)format

Note1: LSB (Least Significant Bit) - R0, G0, B0; MSB (Most Significant Bit) - R7, G7, B7

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Input data signal: 6-bit



Note1: LSB (Least Significant Bit) - R0, G0, B0 MSB (Most Significant Bit) - R7, G7, B7

Note2: Twist pair wires with 100 Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

5.4 LVDS Rx AC SPEC

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Clock frequency	RXFCLK	10	-	110	MHz	
1 data bit time	UI	1/7	1/RXFCLK			
Position 1	Rspos1	-0.2	0	0.2	IJ	
Position 2	Rspos2	8.0	1	1.2	J	
Position 3	Rspos3	1.8	2	2.2	J	
Position 4	Rspos4	2.8	3	3.2	UI	
Position 5	Rspos5	8	4	4.2	UI	
Position 6	Rspos6	4.8	5	5.2	UI	
Position 7	Rspos7	5.8	6	6.2	IJ	
Input data skew margin	TRSKM	-	-	0.2	UI	VID =100mV RXVCM=1.2V RXFCLK=75MHz
Clock high time	TLVCH	-	4/(7*RXFCLK)	-	ns	
Clock low time	TLVCL	1	3/(7*RXFCLK)	-	ns	
PLL wake-up time	TenPLL	-	-	150	us	

Ideal TX Pulse Position

Ideal TX Pulse Position

TRSKM: Receiver strobe margin Tsw: Strobe width (internal data

sampling window)

VTH=Rxvcm+|VID|/2, VTL=Rxvcm-|VID|/2

5.5 Display Colors and Input Data Signals

5.5.1 16,777,216 colors

This product can display equivalent of 16,777,216 colors with 256 gray scales (FRC:High). Also the relation between display colors and input data signals is as follows.

Dienlas	colors								Data																
Display	7 COIOIS	R7	R6	R5	R4	R3	R2	R1	R0	G7	' G6	G5	G4	G3	G2	G1 (G0	В7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ပိ	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ısic	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
B	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	↑													:								:			
rg I	\downarrow													:								:			
Rec	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
'sc	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green gray scale	1				:									:								:			
d us	\downarrow													•								:			
J. Gree	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue gray scale	↑				:									:								:			
9) 50	\downarrow					:								:								:			
Blu	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	D.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	l	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	l	1	1	1	1	1	1

P1210XGF1MB00

5.5.2 262,144colors

This product can display equivalent of 262,144 colors with 64 gray scales (FRC:Low). Also the relation between display colors and input data signals is as follows.

	colors						Data	a sign		Low			ligh le						
Dispiay	colors	R 5	R4	R3	R 2	R 1	R0	G5	G4	G3	G2	G1	G0	В5	B4	В3	B 2	B 1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
S	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic colors	Magent	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
ic c	а	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Bas	Green	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Cyan	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	Yellow White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
o		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
cal	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	↑			:	:						:						:		
l gr	\downarrow			:							:						:		
Rec	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
SC.	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
gray	1			:							:						:		
Green gray scale	. ↓				:						:						:		
Gre	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale	مام ما د	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
' sc:	dark ↑	0	U	U	. 0	U	U	U	U	U		U	U	U	U	U	. 0	1	0
Blue gray scale	↑			:	· :						:						:		
Blu	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
. ¬		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

5.6 Display Positions

	R G B								
1	D(1, 1)	D(2, 1)	• • •	D(X, 1)	• • •	D(1023, 1)	D(1024, 1)		
	D(1, 2)	D(2, 2)	• • •	D(X, 2)	• • •	D(1023, 2)	D(1024, 2)		
	•	•	•	•	•	•	•		
	•	•	• • •	•	• • •	•	• • •		
	•	•	•	•	•	•	•		
	D(1, Y)	D(2, Y)	• • •	D(X, Y)	• • •	D(1023, Y)	D(1024, Y)		
	•	•	•	•	•	•	•		
	•	•	• • •	•	• • •	•	•		
	•	•	•	•	•	•	•		
	D(1, 799)	D(2, 799)	• • •	D(X, 767)	• • •	D(1023, 767)	D(1024, 767)		
	D(1, 800)	D(2, 800)	• • •	D(X, 768)	• • •	D(1023, 768)	D(1024, 768)		

5.7 Scanning Direction

The following figures are seen from a front view.

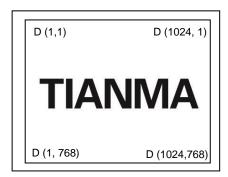


Figure 1. Normal scan (DPS: High)

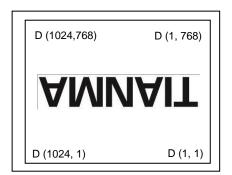
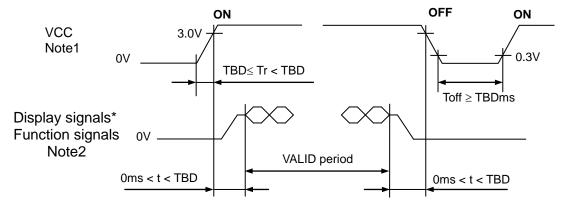
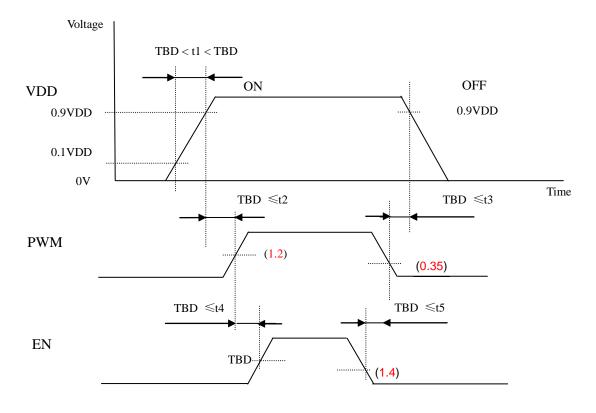



Figure 2. Reverse scan (DPS: Low)

5.8 POWER SUPPLY VOLTAGE SEQUENCE

5.8.1 LCD panel signal processing board

^{*} These signals should be measured at the terminal of 100Ω resistance.


Note1:If there is a voltage variation (voltage drop) at the rising edge of VCC below 3.0V, there is a possibility that a product does not work due to a protection circuit. Note2: Display signals (D0+/-, D1+/-, D2+/- and CLK+/-) and function signals (DPS) must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.

P1210XGF1MB00

If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.

5.8.2 LED Driver

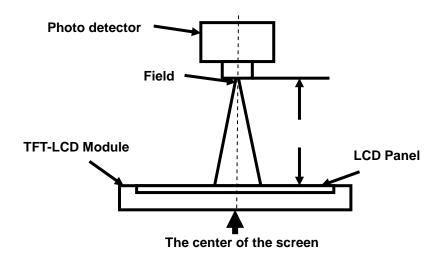
P1210XGF1MB00

6 Optical Characteristics

6.1 Optical Specification

Ta=25°C

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark	
		θТ		70	88	-			
\		θВ	CD > 10	70	88	-	Dograd	Note 2	
View Angles		θL	CR≧10	70	88	-	Degree	Note 2	
		θR		70	88	-			
Contrast Ratio		CR	θ=0°	800	1000	-	-	Note1 Note3	
Response Time		T _{ON}	25 ℃	-	25	35	ms	Note1 Note4	
) A //- : (-	х			TBD				
	White	У			TBD				
	Red	х	Backlight is on		TBD		_		
Chromaticity	Red	У			TBD			Note5	
Chilomaticity	Green	Х			TBD			Note1	
	Oreen	У			TBD				
	Blue	Х			TBD				
	Biao	У			TBD				
Uniformity		U	-	75	80	-	%	Note1 Note6	
NTSC		-	-	65	72	-	%	Note 5	
Luminance		L	-	TBD	500	-	cd/m ²	Note1	


Test Conditions:

- 1. The ambient temperature is 25±2℃.humidity is 65±7%
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

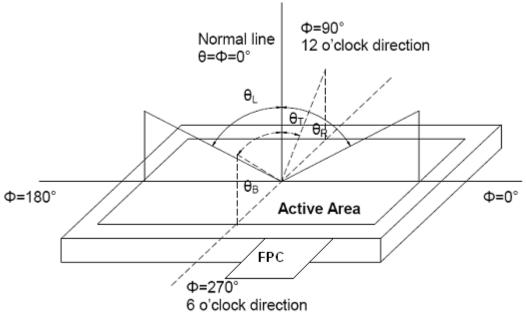


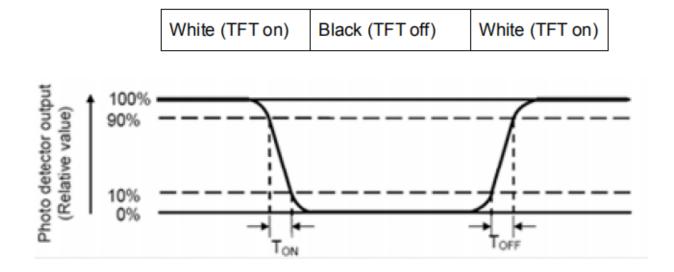
Fig. 1 Definition of viewing angle

P1210XGF1MB00

Note 3: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state

Luminance measured when LCD is on the "Black" state


"White state ":The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

P1210XGF1MB00

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/Lmax

L----- Active area length W----- Active area width

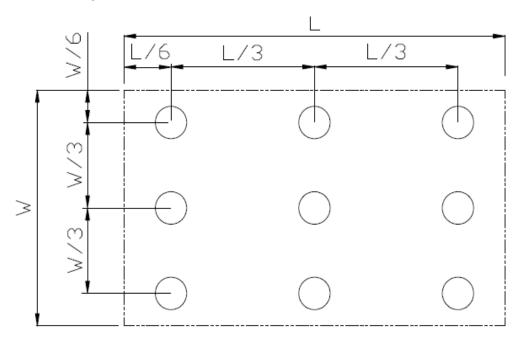


Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

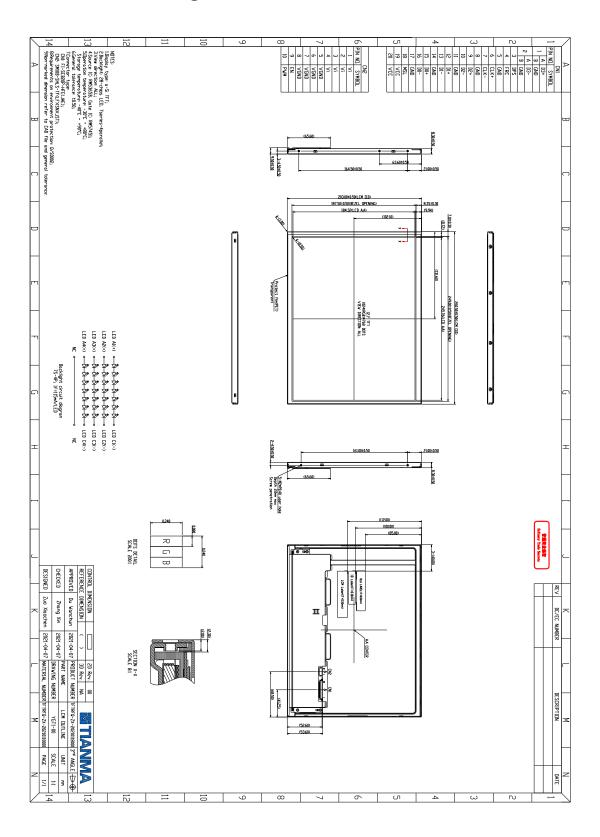
Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

7 Environmental / Reliability Test

No	Test Item	Condition	Remark
1	High Temperature Operation	Ta = +80°C,240 hours	IEC60068-2-1 GB2423.2
2	Low Temperature Operation	Ta = -30°C, 240 hours	IEC60068-2-1 GB2423.1
3	High Temperature Storage	Ta = +90°C, 240 hours	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	Ta = -40°C, 240 hours	IEC60068-2-1 GB2423.1
5	High Temperature & High Humidity Operation	Ta = +60℃, 90% RH max,240 hours	IEC60068-2-78 GB/T2423.3
6	Thermal Shock (non-operation)	-30°C 30 min~+80°C 30 min, Change time:5min, 100 Cycle	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22
7	ESD	C=150pF,R=330Ω,9point/pan el Air:±15Kv,5times; Contact:±8Kv,5times (Environment:15°C~35°C, 30%~60%.86Kpa~106Kpa)	IEC61000-4-2 GB/T17626.2
8	Vibration Test (Non Op)	5~100HZ,19.60m/s2 1min/cycle 120times Per X\Y\Z	IEC60068-2-6 GB/T17626.6
9	Mechanical Shock (Non Op)	539m/s2, 11ms 5times \pm X、 \pm Y、 \pm Z	IEC60068-2-27 GB/T2423.5

Note1: Ts is the temperature of panel's surface.


Note2: Ta is the ambient temperature of sample.

Note3: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note 4: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

8 Mechanical Drawing

P1210XGF1MB00

9 Packing Drawing

10 Precautions for Use of LCD Modules

10.1 Handling Precautions

- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage Precautions

- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

11.1.1 Display specifications

(Note1)

Defect pattern		Condi	tion		Criteria
Line defect	Display of black , wh	nite, red, greer	n, blue		Oline
	Red + Green + Blue		≤ 3dots		
	Close defect dots Note5	-	0 ≤ 15mm ote7	Same color and different color	0set
Bright dots Note2, Note3			2 defect	Same color	0set
	Linked defect dots Note6	D = 0mm Note7	dots	Different color	≤ 1set
	Noteo	Note?	3 defect dots or more	Same color and different color	0set
	Red + Green + Blue	≤ 3dots			
Dark dots	Close defect dots Note5	0mm < I No	Same color and different color	0set	
Note2, Note4	Linked defect dots	D = 0mm	2 defect dots	Same color and different color	Oper
	Note6	Note7	3 defect dots or more	Same color and different color	0set
	Close defect dots Note5	-) ≤ 15mm ote7	Same color and different color	Allowed
Between Bright dots and Dark dots	Linked defect dots	D = 0mm	2 defect dots	Same color and different color	Allowed
	Note6	Note7	3 defect dots or more	Same color and different color	Oset
Total	Bright dots + Dark de	ots			≤ 6dots

Note1: Inspection conditions are as follows.

Temperature	25 ± 5°C				
Inspection viewing distance	20cm (The distance between the inspector's eye and screen.)				
Inspection direction	$0^{\circ} \le \theta R \le 20^{\circ}, 0^{\circ} \le \theta L \le 20^{\circ}$				
Inspection direction	$0^{\circ} \le \theta U \le 20^{\circ}$				
Inspection illumination	60lx (at a display surface)				

Note2: See "The common inspection specifications of LCD module product (DOD-PE-16097)" for the definitions.

Note3: Inspection display patterns for Bright dots are referred to "The common inspection specifications of LCD module product (DOD-PE-16097)".

Note4: Inspection display patterns for Dark dots are referred to "The common

P1210XGF1MB00

inspection specifications of LCD module product (DOD-PE-16097)".

Note5: See **"4.11.2 Close defect dots"**. Note6: See **"4.10.3 Linked defect dots"**. Note7: **D** is the distance between defect dots.

11.1.2 Close defect dots

Defect pattern	☐ : Bright dot ☐ : Dark dot	Criteria
Bright dots	Same color and Different color Omm < D ≤ 15mm	Onet
Dark dots	Same color and Different color 0mm < D ≤ 15mm	0set
Combination of bright dot and dark dot	0mm < D ≤ 15mm	Allowed

11.1.3 Linked defect dots

Defect pattern	☐ : Bright dot ☐ : Dark dot	Criteria
	Same color	0set
2 defect dots	Different color	≤ 1set
	Same color and Different color	0set
	Combination of bright dot and dark dot	Allowed

Defect pattern	: Bright dot	Criteria
	: Dark dot	
3 defect dots	Bright dot Combination of bright dot and dark dot	Oset
	Etc.	

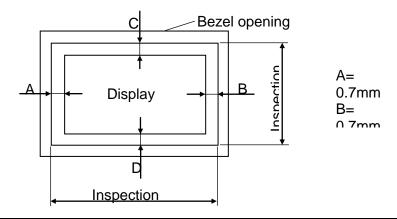
11.1.4 Appearance specifications

(Note1, Note2, Note3)

				,
Defect pat	tern		Condition	Criteria
		d	< 0.2mm	Allowed
	Dot	0.2mn	≤ 10points	
	shape	0.3mn	n ≤ d ≤ 0.5mm	≤ 3points
Impure		d	> 0.5mm	0point
ingredient Stains		W	< 0.05mm	Allowed
Dust			L < 0.7mm	Allowed
	Line shape	$0.05mm \le W \le 0.1mm$	$0.7mm \le L \le 1.0mm$	≤ 4points
			L > 1.0mm	Oneint
		W	Opoint	
		d	Allowed	
Bubbles, Wrink	les, Dent	0.2mm	< d ≤ 0.5mm	≤ 2points
		d	0point	
Saratah (Surface)	of polorizor)	S	Allowed	
Scratch (Surface of	oi poializei)	S	> 0.2mm ²	0point

Note1: Definition of symbols is as follows.

d: Average diameter


(This diameter is the average length of a long axis and a short axis in each defect pattern.)

W: Width, L: Length, S: Area

Note2: Inspection conditions are as follows.

Temperature	25 ± 5°C				
Inspection viewing distance	20cm (The distance between the inspector's eye and screen.)				
Inspection direction	$0^{\circ} \le \theta R \le 45^{\circ}, 0^{\circ} \le \theta L \le 45^{\circ}$				
inspection direction	$0^{\circ} \le \theta U \le 45^{\circ}$, $0^{\circ} \le \theta D \le 45^{\circ}$				
Inspection illumination	700lx (at an inspection desk surface)				

Note3: Inspection area

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
Internet: www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

 Phone:
 +41 44 7446111

 E-Mail:
 info@altrac.ch

 Internet:
 www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk
Internet: www.displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: +1 631 5804360
E-Mail: info@apollodisplays.com
Internet: www.apollodisplays.com